Hothouse Gas Spikes to Extreme 409.3 Parts Per Million on April 10 — Record Rate of Atmospheric CO2

Hey Matt --- Can ya graph that up for us? Maybe the other 19 stations too...

Thanks....

BTW --- Likely to be a side effect of the El Nino.. TEMPERATURE causes CO2 increases..
 
Hothouse Gas Spikes to Extreme 409.3 Parts Per Million on April 10 — Record Rate of Atmospheric CO2 Increase Likely for 2016
Simply put, a rapid atmospheric accumulation of greenhouse gasses is swiftly pushing the Earth well outside of any climate context that human beings are used to. The influence of an extreme El Nino on the world ocean system’s ability to take down a massive human carbon emission together with signs of what appears to be a significantly smaller but growing emission from global carbon stores looks to be setting the world up for another record jump in atmospheric CO2 levels during 2016.



(See the little dot well above the blue trend line on the upper right hand portion of the above graph? That mark’s no accident. It represents daily atmospheric CO2 readings of around 409.3 parts per million CO2 at the Mauna Loa Observatory on April 10 of 2016. It’s an insanely high reading. But over the next two months we may see daily values continue to peak in this range or hit even higher levels. Image source: The Keeling Curve.)

Already, as we near the annual peak during late April through early May, major CO2 spikes are starting to show up. On Sunday, April 10 the Mauna Loa Observatory recorded a daily CO2 reading in the extraordinary range of 409.3 parts per million. These readings follow March monthly averages near 405 parts per million and precede an annual monthly peak in May that’s likely to hit above 407 parts per million and may strike as high as 409 parts per million. These are levels about 135 to 235 parts per million above the average interglacial to ice age range for CO2 levels during the relatively stable climate period of the last 2 million years.

In other words — atmospheric CO2 levels continue to climb into unprecedented ranges. Levels that are increasingly out-of-context scary. For we haven’t seen readings of this heat trapping gas hit so high in any time during at least the past 15 million years.

2016 Could See Atmospheric CO2 Increase by 3.1 to 5.1 Parts Per Million Above 2015

During a ‘normal’ year, if this period of reckless human fossil fuel burning can be rationally compared to anything ‘normal,’ we’d expect CO2 levels to rise by around 2 parts per million. Such a jump in the 2015 to 2016 period would result in monthly averages peaking around 406 parts per million by May. However, with a record El Nino and other influences producing large areas of abnormally warm sea surfaces, the world ocean’s ability to draw down both the massive human emission and the apparently much smaller, but seemingly growing, global carbon feedback has been hampered.



(Annual mean CO2 growth rate for 2016 is likely to hit even higher than records seen during 2015 due to the influence of a record El Nino on the world ocean system’s ability to draw down excess atmospheric carbon and due to the fact that global CO2 emission remain near record high levels set in 2014. Image source: NOAA ESRL.)

In 1998, during a then record El Nino and at a time when global carbon emissions from human sources were significantly lower than they are today and during a period when the global carbon stores appeared to be mostly dormant, atmospheric CO2 levels rose by a then record 2.9 parts per million. During 2015, as a record El Nino ramped up and as the global carbon stores continued their ominous rumbling, annual average increases hit a new high of 3.05 parts per million. But with the strongest El Nino impacts hampering ocean carbon draw-down extending on into the current year, it appears that 2016 average rates of atmospheric CO2 increase are likely to be even higher. Due to this, hopefully temporary, reduction in the ocean’s ability to take in atmospheric carbon, we’re likely to see May 2016 CO2 levels at Mauna Loa hit a range of 3.1 to 5.1 parts per million (407 to 409 ppm in total) above previous record high levels of around 403.9 parts per million for the same month during 2015.

The Last Time CO2 Values Were So High Was During the Middle Miocene — 15 Million Years in the Earth’s Deep Past

By any yardstick, these are extreme annual rates of atmospheric CO2 increase. Rates that are likely at least an order of magnitude faster than during the last hothouse extinction — the PETM — 55 million years ago. Just a few years ago, the scientific bodies of the world voiced serious concern about atmospheric CO2 levels equaling those seen during the Pliocene period — a geological epoch 3-5 million years ago when Earth temperatures were 2-3 C warmer than they are today and atmospheric CO2 levels ranged between 390 and 405 parts per million. But in just a brief interval, we’ve blown past that potential paleoclimate context and into another, more difficult, much warmer, world. A period further back into the great long ago when human civilization as it is today couldn’t have been imagined and a species called homo sapiens had millions of years yet to even begin to exist.



(For the week ending April 10, it appears that atmospheric CO2 levels have already averaged above 407 parts per million. Over the next two months, global atmospheric levels will reach new record highs likely in the range of 407 to 409 parts per million in the monthly values representing an extreme jump in readings of this key heat trapping gas. Image source: NOAA ESRL.)

For it’s been about 15 million years since we’ve seen atmospheric values of this critical greenhouse gas hit levels so high. Back then, the Earth was about 3-5 degrees Celsius hotter than the 19th Century and oceans were about 120 to 190 feet higher. Maintaining current greenhouse gas levels in this range for any extended will risk reverting to climate states similar to those of the Middle Miocene past — or potentially warmer if global carbon stores laid down during the period of the last 15 million years of cooling are again released into the Earth’s ocean and atmosphere.

At current annual rates of atmospheric CO2 increase, it will take between 20 and 50 years to exceed the Miocene and Ogliocene range of 405 to 520 parts per million CO2. At that point, we would be hitting CO2 levels high enough to wipe out most or all of the glacial ice on Earth. That’s basically what happens if we keep burning fossil fuels as we are now for another few decades.

In any case, it’s worth noting that 2016’s potential annual atmospheric CO2 increase of between 3.1 and 5.1 parts per million is extraordinarily bad. Something we shouldn’t be doing to the Earth’s climate system. There really is no other way to say it. Such rates of hothouse gas increases are absolutely terrible.

Is it possible that one of the carbon sinks has blown?


Most of the human race is standing with it's back to a tsunami 100 feet tall heading towards them. And likely it's already too late to run.

The 6th mass extinction is already underway and we will find out if we are going to be one of the causalties.
 
Hothouse Gas Spikes to Extreme 409.3 Parts Per Million on April 10 — Record Rate of Atmospheric CO2 Increase Likely for 2016
Simply put, a rapid atmospheric accumulation of greenhouse gasses is swiftly pushing the Earth well outside of any climate context that human beings are used to. The influence of an extreme El Nino on the world ocean system’s ability to take down a massive human carbon emission together with signs of what appears to be a significantly smaller but growing emission from global carbon stores looks to be setting the world up for another record jump in atmospheric CO2 levels during 2016.



(See the little dot well above the blue trend line on the upper right hand portion of the above graph? That mark’s no accident. It represents daily atmospheric CO2 readings of around 409.3 parts per million CO2 at the Mauna Loa Observatory on April 10 of 2016. It’s an insanely high reading. But over the next two months we may see daily values continue to peak in this range or hit even higher levels. Image source: The Keeling Curve.)

Already, as we near the annual peak during late April through early May, major CO2 spikes are starting to show up. On Sunday, April 10 the Mauna Loa Observatory recorded a daily CO2 reading in the extraordinary range of 409.3 parts per million. These readings follow March monthly averages near 405 parts per million and precede an annual monthly peak in May that’s likely to hit above 407 parts per million and may strike as high as 409 parts per million. These are levels about 135 to 235 parts per million above the average interglacial to ice age range for CO2 levels during the relatively stable climate period of the last 2 million years.

In other words — atmospheric CO2 levels continue to climb into unprecedented ranges. Levels that are increasingly out-of-context scary. For we haven’t seen readings of this heat trapping gas hit so high in any time during at least the past 15 million years.

2016 Could See Atmospheric CO2 Increase by 3.1 to 5.1 Parts Per Million Above 2015

During a ‘normal’ year, if this period of reckless human fossil fuel burning can be rationally compared to anything ‘normal,’ we’d expect CO2 levels to rise by around 2 parts per million. Such a jump in the 2015 to 2016 period would result in monthly averages peaking around 406 parts per million by May. However, with a record El Nino and other influences producing large areas of abnormally warm sea surfaces, the world ocean’s ability to draw down both the massive human emission and the apparently much smaller, but seemingly growing, global carbon feedback has been hampered.



(Annual mean CO2 growth rate for 2016 is likely to hit even higher than records seen during 2015 due to the influence of a record El Nino on the world ocean system’s ability to draw down excess atmospheric carbon and due to the fact that global CO2 emission remain near record high levels set in 2014. Image source: NOAA ESRL.)

In 1998, during a then record El Nino and at a time when global carbon emissions from human sources were significantly lower than they are today and during a period when the global carbon stores appeared to be mostly dormant, atmospheric CO2 levels rose by a then record 2.9 parts per million. During 2015, as a record El Nino ramped up and as the global carbon stores continued their ominous rumbling, annual average increases hit a new high of 3.05 parts per million. But with the strongest El Nino impacts hampering ocean carbon draw-down extending on into the current year, it appears that 2016 average rates of atmospheric CO2 increase are likely to be even higher. Due to this, hopefully temporary, reduction in the ocean’s ability to take in atmospheric carbon, we’re likely to see May 2016 CO2 levels at Mauna Loa hit a range of 3.1 to 5.1 parts per million (407 to 409 ppm in total) above previous record high levels of around 403.9 parts per million for the same month during 2015.

The Last Time CO2 Values Were So High Was During the Middle Miocene — 15 Million Years in the Earth’s Deep Past

By any yardstick, these are extreme annual rates of atmospheric CO2 increase. Rates that are likely at least an order of magnitude faster than during the last hothouse extinction — the PETM — 55 million years ago. Just a few years ago, the scientific bodies of the world voiced serious concern about atmospheric CO2 levels equaling those seen during the Pliocene period — a geological epoch 3-5 million years ago when Earth temperatures were 2-3 C warmer than they are today and atmospheric CO2 levels ranged between 390 and 405 parts per million. But in just a brief interval, we’ve blown past that potential paleoclimate context and into another, more difficult, much warmer, world. A period further back into the great long ago when human civilization as it is today couldn’t have been imagined and a species called homo sapiens had millions of years yet to even begin to exist.



(For the week ending April 10, it appears that atmospheric CO2 levels have already averaged above 407 parts per million. Over the next two months, global atmospheric levels will reach new record highs likely in the range of 407 to 409 parts per million in the monthly values representing an extreme jump in readings of this key heat trapping gas. Image source: NOAA ESRL.)

For it’s been about 15 million years since we’ve seen atmospheric values of this critical greenhouse gas hit levels so high. Back then, the Earth was about 3-5 degrees Celsius hotter than the 19th Century and oceans were about 120 to 190 feet higher. Maintaining current greenhouse gas levels in this range for any extended will risk reverting to climate states similar to those of the Middle Miocene past — or potentially warmer if global carbon stores laid down during the period of the last 15 million years of cooling are again released into the Earth’s ocean and atmosphere.

At current annual rates of atmospheric CO2 increase, it will take between 20 and 50 years to exceed the Miocene and Ogliocene range of 405 to 520 parts per million CO2. At that point, we would be hitting CO2 levels high enough to wipe out most or all of the glacial ice on Earth. That’s basically what happens if we keep burning fossil fuels as we are now for another few decades.

In any case, it’s worth noting that 2016’s potential annual atmospheric CO2 increase of between 3.1 and 5.1 parts per million is extraordinarily bad. Something we shouldn’t be doing to the Earth’s climate system. There really is no other way to say it. Such rates of hothouse gas increases are absolutely terrible.

Is it possible that one of the carbon sinks has blown?


Most of the human race is standing with it's back to a tsunami 100 feet tall heading towards them. And likely it's already too late to run.

The 6th mass extinction is already underway and we will find out if we are going to be one of the causalties.

The_drama_llama.jpg
 
Hothouse Gas Spikes to Extreme 409.3 Parts Per Million on April 10 — Record Rate of Atmospheric CO2 Increase Likely for 2016
Simply put, a rapid atmospheric accumulation of greenhouse gasses is swiftly pushing the Earth well outside of any climate context that human beings are used to. The influence of an extreme El Nino on the world ocean system’s ability to take down a massive human carbon emission together with signs of what appears to be a significantly smaller but growing emission from global carbon stores looks to be setting the world up for another record jump in atmospheric CO2 levels during 2016.



(See the little dot well above the blue trend line on the upper right hand portion of the above graph? That mark’s no accident. It represents daily atmospheric CO2 readings of around 409.3 parts per million CO2 at the Mauna Loa Observatory on April 10 of 2016. It’s an insanely high reading. But over the next two months we may see daily values continue to peak in this range or hit even higher levels. Image source: The Keeling Curve.)

Already, as we near the annual peak during late April through early May, major CO2 spikes are starting to show up. On Sunday, April 10 the Mauna Loa Observatory recorded a daily CO2 reading in the extraordinary range of 409.3 parts per million. These readings follow March monthly averages near 405 parts per million and precede an annual monthly peak in May that’s likely to hit above 407 parts per million and may strike as high as 409 parts per million. These are levels about 135 to 235 parts per million above the average interglacial to ice age range for CO2 levels during the relatively stable climate period of the last 2 million years.

In other words — atmospheric CO2 levels continue to climb into unprecedented ranges. Levels that are increasingly out-of-context scary. For we haven’t seen readings of this heat trapping gas hit so high in any time during at least the past 15 million years.

2016 Could See Atmospheric CO2 Increase by 3.1 to 5.1 Parts Per Million Above 2015

During a ‘normal’ year, if this period of reckless human fossil fuel burning can be rationally compared to anything ‘normal,’ we’d expect CO2 levels to rise by around 2 parts per million. Such a jump in the 2015 to 2016 period would result in monthly averages peaking around 406 parts per million by May. However, with a record El Nino and other influences producing large areas of abnormally warm sea surfaces, the world ocean’s ability to draw down both the massive human emission and the apparently much smaller, but seemingly growing, global carbon feedback has been hampered.



(Annual mean CO2 growth rate for 2016 is likely to hit even higher than records seen during 2015 due to the influence of a record El Nino on the world ocean system’s ability to draw down excess atmospheric carbon and due to the fact that global CO2 emission remain near record high levels set in 2014. Image source: NOAA ESRL.)

In 1998, during a then record El Nino and at a time when global carbon emissions from human sources were significantly lower than they are today and during a period when the global carbon stores appeared to be mostly dormant, atmospheric CO2 levels rose by a then record 2.9 parts per million. During 2015, as a record El Nino ramped up and as the global carbon stores continued their ominous rumbling, annual average increases hit a new high of 3.05 parts per million. But with the strongest El Nino impacts hampering ocean carbon draw-down extending on into the current year, it appears that 2016 average rates of atmospheric CO2 increase are likely to be even higher. Due to this, hopefully temporary, reduction in the ocean’s ability to take in atmospheric carbon, we’re likely to see May 2016 CO2 levels at Mauna Loa hit a range of 3.1 to 5.1 parts per million (407 to 409 ppm in total) above previous record high levels of around 403.9 parts per million for the same month during 2015.

The Last Time CO2 Values Were So High Was During the Middle Miocene — 15 Million Years in the Earth’s Deep Past

By any yardstick, these are extreme annual rates of atmospheric CO2 increase. Rates that are likely at least an order of magnitude faster than during the last hothouse extinction — the PETM — 55 million years ago. Just a few years ago, the scientific bodies of the world voiced serious concern about atmospheric CO2 levels equaling those seen during the Pliocene period — a geological epoch 3-5 million years ago when Earth temperatures were 2-3 C warmer than they are today and atmospheric CO2 levels ranged between 390 and 405 parts per million. But in just a brief interval, we’ve blown past that potential paleoclimate context and into another, more difficult, much warmer, world. A period further back into the great long ago when human civilization as it is today couldn’t have been imagined and a species called homo sapiens had millions of years yet to even begin to exist.



(For the week ending April 10, it appears that atmospheric CO2 levels have already averaged above 407 parts per million. Over the next two months, global atmospheric levels will reach new record highs likely in the range of 407 to 409 parts per million in the monthly values representing an extreme jump in readings of this key heat trapping gas. Image source: NOAA ESRL.)

For it’s been about 15 million years since we’ve seen atmospheric values of this critical greenhouse gas hit levels so high. Back then, the Earth was about 3-5 degrees Celsius hotter than the 19th Century and oceans were about 120 to 190 feet higher. Maintaining current greenhouse gas levels in this range for any extended will risk reverting to climate states similar to those of the Middle Miocene past — or potentially warmer if global carbon stores laid down during the period of the last 15 million years of cooling are again released into the Earth’s ocean and atmosphere.

At current annual rates of atmospheric CO2 increase, it will take between 20 and 50 years to exceed the Miocene and Ogliocene range of 405 to 520 parts per million CO2. At that point, we would be hitting CO2 levels high enough to wipe out most or all of the glacial ice on Earth. That’s basically what happens if we keep burning fossil fuels as we are now for another few decades.

In any case, it’s worth noting that 2016’s potential annual atmospheric CO2 increase of between 3.1 and 5.1 parts per million is extraordinarily bad. Something we shouldn’t be doing to the Earth’s climate system. There really is no other way to say it. Such rates of hothouse gas increases are absolutely terrible.

Is it possible that one of the carbon sinks has blown?

OH MY ALLAH, WE'RE GOING TO - oh wait, nothing happened.
 
Most of the human race is standing with it's back to a tsunami 100 feet tall heading towards them. And likely it's already too late to run.

The 6th mass extinction is already underway and we will find out if we are going to be one of the causalties.

Doesn't matter though, the Supreme Pontiff of your Religion released an encyclical that we would all die from rising oceans in the year 2000.

Since there is consensus among grant recipients that the Cult is infallible, that means we are all dead and just ghosts meandering on a dead world...

:lol:

You religious freaks are a hoot.
 
Most of the human race is standing with it's back to a tsunami 100 feet tall heading towards them. And likely it's already too late to run.

The 6th mass extinction is already underway and we will find out if we are going to be one of the causalties.

Doesn't matter though, the Supreme Pontiff of your Religion released an encyclical that we would all die from rising oceans in the year 2000.

Since there is consensus among grant recipients that the Cult is infallible, that means we are all dead and just ghosts meandering on a dead world...

:lol:

You religious freaks are a hoot.

You are a whiner aren't you, probably come from a long line of whiners who hide in the basement 'cuz the weel world is too scawwry'.

You are a Flat Earther, Birther, Bigfoot Believer. You are to be ignored. Go find your blanky.
 
You are a whiner aren't you, probably come from a long line of whiners who hide in the basement 'cuz the weel world is too scawwry'.

You are a Flat Earther, Birther, Bigfoot Believer. You are to be ignored. Go find your blanky.

I mock you because you follow one of the most absurd religions there is. You literally cling to the primitive Volcano God shit that cave men popularized prior to evolving to full humans..

AGW, the religion that has consensus, among proto-humans. :rofl:

I'm laughing at you, because you are retarded.
 
Mod Note:

Wouldn't be the 1st time an Enviro thread got deported to the Flame Zone.
It's healthy and cathartic. Keep up the personal sniping and you'll be there
before the End of the World..
 
Hothouse Gas Spikes to Extreme 409.3 Parts Per Million on April 10 — Record Rate of Atmospheric CO2 Increase Likely for 2016
Simply put, a rapid atmospheric accumulation of greenhouse gasses is swiftly pushing the Earth well outside of any climate context that human beings are used to. The influence of an extreme El Nino on the world ocean system’s ability to take down a massive human carbon emission together with signs of what appears to be a significantly smaller but growing emission from global carbon stores looks to be setting the world up for another record jump in atmospheric CO2 levels during 2016.



(See the little dot well above the blue trend line on the upper right hand portion of the above graph? That mark’s no accident. It represents daily atmospheric CO2 readings of around 409.3 parts per million CO2 at the Mauna Loa Observatory on April 10 of 2016. It’s an insanely high reading. But over the next two months we may see daily values continue to peak in this range or hit even higher levels. Image source: The Keeling Curve.)

Already, as we near the annual peak during late April through early May, major CO2 spikes are starting to show up. On Sunday, April 10 the Mauna Loa Observatory recorded a daily CO2 reading in the extraordinary range of 409.3 parts per million. These readings follow March monthly averages near 405 parts per million and precede an annual monthly peak in May that’s likely to hit above 407 parts per million and may strike as high as 409 parts per million. These are levels about 135 to 235 parts per million above the average interglacial to ice age range for CO2 levels during the relatively stable climate period of the last 2 million years.

In other words — atmospheric CO2 levels continue to climb into unprecedented ranges. Levels that are increasingly out-of-context scary. For we haven’t seen readings of this heat trapping gas hit so high in any time during at least the past 15 million years.

2016 Could See Atmospheric CO2 Increase by 3.1 to 5.1 Parts Per Million Above 2015

During a ‘normal’ year, if this period of reckless human fossil fuel burning can be rationally compared to anything ‘normal,’ we’d expect CO2 levels to rise by around 2 parts per million. Such a jump in the 2015 to 2016 period would result in monthly averages peaking around 406 parts per million by May. However, with a record El Nino and other influences producing large areas of abnormally warm sea surfaces, the world ocean’s ability to draw down both the massive human emission and the apparently much smaller, but seemingly growing, global carbon feedback has been hampered.



(Annual mean CO2 growth rate for 2016 is likely to hit even higher than records seen during 2015 due to the influence of a record El Nino on the world ocean system’s ability to draw down excess atmospheric carbon and due to the fact that global CO2 emission remain near record high levels set in 2014. Image source: NOAA ESRL.)

In 1998, during a then record El Nino and at a time when global carbon emissions from human sources were significantly lower than they are today and during a period when the global carbon stores appeared to be mostly dormant, atmospheric CO2 levels rose by a then record 2.9 parts per million. During 2015, as a record El Nino ramped up and as the global carbon stores continued their ominous rumbling, annual average increases hit a new high of 3.05 parts per million. But with the strongest El Nino impacts hampering ocean carbon draw-down extending on into the current year, it appears that 2016 average rates of atmospheric CO2 increase are likely to be even higher. Due to this, hopefully temporary, reduction in the ocean’s ability to take in atmospheric carbon, we’re likely to see May 2016 CO2 levels at Mauna Loa hit a range of 3.1 to 5.1 parts per million (407 to 409 ppm in total) above previous record high levels of around 403.9 parts per million for the same month during 2015.

The Last Time CO2 Values Were So High Was During the Middle Miocene — 15 Million Years in the Earth’s Deep Past

By any yardstick, these are extreme annual rates of atmospheric CO2 increase. Rates that are likely at least an order of magnitude faster than during the last hothouse extinction — the PETM — 55 million years ago. Just a few years ago, the scientific bodies of the world voiced serious concern about atmospheric CO2 levels equaling those seen during the Pliocene period — a geological epoch 3-5 million years ago when Earth temperatures were 2-3 C warmer than they are today and atmospheric CO2 levels ranged between 390 and 405 parts per million. But in just a brief interval, we’ve blown past that potential paleoclimate context and into another, more difficult, much warmer, world. A period further back into the great long ago when human civilization as it is today couldn’t have been imagined and a species called homo sapiens had millions of years yet to even begin to exist.



(For the week ending April 10, it appears that atmospheric CO2 levels have already averaged above 407 parts per million. Over the next two months, global atmospheric levels will reach new record highs likely in the range of 407 to 409 parts per million in the monthly values representing an extreme jump in readings of this key heat trapping gas. Image source: NOAA ESRL.)

For it’s been about 15 million years since we’ve seen atmospheric values of this critical greenhouse gas hit levels so high. Back then, the Earth was about 3-5 degrees Celsius hotter than the 19th Century and oceans were about 120 to 190 feet higher. Maintaining current greenhouse gas levels in this range for any extended will risk reverting to climate states similar to those of the Middle Miocene past — or potentially warmer if global carbon stores laid down during the period of the last 15 million years of cooling are again released into the Earth’s ocean and atmosphere.

At current annual rates of atmospheric CO2 increase, it will take between 20 and 50 years to exceed the Miocene and Ogliocene range of 405 to 520 parts per million CO2. At that point, we would be hitting CO2 levels high enough to wipe out most or all of the glacial ice on Earth. That’s basically what happens if we keep burning fossil fuels as we are now for another few decades.

In any case, it’s worth noting that 2016’s potential annual atmospheric CO2 increase of between 3.1 and 5.1 parts per million is extraordinarily bad. Something we shouldn’t be doing to the Earth’s climate system. There really is no other way to say it. Such rates of hothouse gas increases are absolutely terrible.

Is it possible that one of the carbon sinks has blown?


Most of the human race is standing with it's back to a tsunami 100 feet tall heading towards them. And likely it's already too late to run.

The 6th mass extinction is already underway and we will find out if we are going to be one of the causalties.

Really? Mass extinction? Can you name 5 species which have gone extinct due to climate change? Thought not...and yet, you hysterically claim we are in the midst of a mass extinction. You wackos are completely insane.
 
Climate change is a dominant factor in all their endangerment.

I attended a charity film festival last weekend and there was an interesting film on coffee. All arabica coffee originates from Ethiopia where the wild plant is named "forest coffee". They have hundreds of varieties. The crops grown elsewhere have very limited genetic diversity and frequently go back to Ethiopia for new "blood". Unfortunately, rising temperatures in Ethiopia are driving wild coffee higher and higher into the mountains and thus into less area and reduced diversity. The Ethiopians have already given up any coffee growth in large portions of the country due to the inclement temperatures.

It's entirely possible that global coffee production could be dramatically curtailed in the coming decades.
 
Hothouse Gas Spikes to Extreme 409.3 Parts Per Million on April 10 — Record Rate of Atmospheric CO2 Increase Likely for 2016
Simply put, a rapid atmospheric accumulation of greenhouse gasses is swiftly pushing the Earth well outside of any climate context that human beings are used to. The influence of an extreme El Nino on the world ocean system’s ability to take down a massive human carbon emission together with signs of what appears to be a significantly smaller but growing emission from global carbon stores looks to be setting the world up for another record jump in atmospheric CO2 levels during 2016.



(See the little dot well above the blue trend line on the upper right hand portion of the above graph? That mark’s no accident. It represents daily atmospheric CO2 readings of around 409.3 parts per million CO2 at the Mauna Loa Observatory on April 10 of 2016. It’s an insanely high reading. But over the next two months we may see daily values continue to peak in this range or hit even higher levels. Image source: The Keeling Curve.)

Already, as we near the annual peak during late April through early May, major CO2 spikes are starting to show up. On Sunday, April 10 the Mauna Loa Observatory recorded a daily CO2 reading in the extraordinary range of 409.3 parts per million. These readings follow March monthly averages near 405 parts per million and precede an annual monthly peak in May that’s likely to hit above 407 parts per million and may strike as high as 409 parts per million. These are levels about 135 to 235 parts per million above the average interglacial to ice age range for CO2 levels during the relatively stable climate period of the last 2 million years.

In other words — atmospheric CO2 levels continue to climb into unprecedented ranges. Levels that are increasingly out-of-context scary. For we haven’t seen readings of this heat trapping gas hit so high in any time during at least the past 15 million years.

2016 Could See Atmospheric CO2 Increase by 3.1 to 5.1 Parts Per Million Above 2015

During a ‘normal’ year, if this period of reckless human fossil fuel burning can be rationally compared to anything ‘normal,’ we’d expect CO2 levels to rise by around 2 parts per million. Such a jump in the 2015 to 2016 period would result in monthly averages peaking around 406 parts per million by May. However, with a record El Nino and other influences producing large areas of abnormally warm sea surfaces, the world ocean’s ability to draw down both the massive human emission and the apparently much smaller, but seemingly growing, global carbon feedback has been hampered.



(Annual mean CO2 growth rate for 2016 is likely to hit even higher than records seen during 2015 due to the influence of a record El Nino on the world ocean system’s ability to draw down excess atmospheric carbon and due to the fact that global CO2 emission remain near record high levels set in 2014. Image source: NOAA ESRL.)

In 1998, during a then record El Nino and at a time when global carbon emissions from human sources were significantly lower than they are today and during a period when the global carbon stores appeared to be mostly dormant, atmospheric CO2 levels rose by a then record 2.9 parts per million. During 2015, as a record El Nino ramped up and as the global carbon stores continued their ominous rumbling, annual average increases hit a new high of 3.05 parts per million. But with the strongest El Nino impacts hampering ocean carbon draw-down extending on into the current year, it appears that 2016 average rates of atmospheric CO2 increase are likely to be even higher. Due to this, hopefully temporary, reduction in the ocean’s ability to take in atmospheric carbon, we’re likely to see May 2016 CO2 levels at Mauna Loa hit a range of 3.1 to 5.1 parts per million (407 to 409 ppm in total) above previous record high levels of around 403.9 parts per million for the same month during 2015.

The Last Time CO2 Values Were So High Was During the Middle Miocene — 15 Million Years in the Earth’s Deep Past

By any yardstick, these are extreme annual rates of atmospheric CO2 increase. Rates that are likely at least an order of magnitude faster than during the last hothouse extinction — the PETM — 55 million years ago. Just a few years ago, the scientific bodies of the world voiced serious concern about atmospheric CO2 levels equaling those seen during the Pliocene period — a geological epoch 3-5 million years ago when Earth temperatures were 2-3 C warmer than they are today and atmospheric CO2 levels ranged between 390 and 405 parts per million. But in just a brief interval, we’ve blown past that potential paleoclimate context and into another, more difficult, much warmer, world. A period further back into the great long ago when human civilization as it is today couldn’t have been imagined and a species called homo sapiens had millions of years yet to even begin to exist.



(For the week ending April 10, it appears that atmospheric CO2 levels have already averaged above 407 parts per million. Over the next two months, global atmospheric levels will reach new record highs likely in the range of 407 to 409 parts per million in the monthly values representing an extreme jump in readings of this key heat trapping gas. Image source: NOAA ESRL.)

For it’s been about 15 million years since we’ve seen atmospheric values of this critical greenhouse gas hit levels so high. Back then, the Earth was about 3-5 degrees Celsius hotter than the 19th Century and oceans were about 120 to 190 feet higher. Maintaining current greenhouse gas levels in this range for any extended will risk reverting to climate states similar to those of the Middle Miocene past — or potentially warmer if global carbon stores laid down during the period of the last 15 million years of cooling are again released into the Earth’s ocean and atmosphere.

At current annual rates of atmospheric CO2 increase, it will take between 20 and 50 years to exceed the Miocene and Ogliocene range of 405 to 520 parts per million CO2. At that point, we would be hitting CO2 levels high enough to wipe out most or all of the glacial ice on Earth. That’s basically what happens if we keep burning fossil fuels as we are now for another few decades.

In any case, it’s worth noting that 2016’s potential annual atmospheric CO2 increase of between 3.1 and 5.1 parts per million is extraordinarily bad. Something we shouldn’t be doing to the Earth’s climate system. There really is no other way to say it. Such rates of hothouse gas increases are absolutely terrible.

Is it possible that one of the carbon sinks has blown?

So not it's hot house gas not green house gas?
 
Hothouse Gas Spikes to Extreme 409.3 Parts Per Million on April 10 — Record Rate of Atmospheric CO2 Increase Likely for 2016
Simply put, a rapid atmospheric accumulation of greenhouse gasses is swiftly pushing the Earth well outside of any climate context that human beings are used to. The influence of an extreme El Nino on the world ocean system’s ability to take down a massive human carbon emission together with signs of what appears to be a significantly smaller but growing emission from global carbon stores looks to be setting the world up for another record jump in atmospheric CO2 levels during 2016.



(See the little dot well above the blue trend line on the upper right hand portion of the above graph? That mark’s no accident. It represents daily atmospheric CO2 readings of around 409.3 parts per million CO2 at the Mauna Loa Observatory on April 10 of 2016. It’s an insanely high reading. But over the next two months we may see daily values continue to peak in this range or hit even higher levels. Image source: The Keeling Curve.)

Already, as we near the annual peak during late April through early May, major CO2 spikes are starting to show up. On Sunday, April 10 the Mauna Loa Observatory recorded a daily CO2 reading in the extraordinary range of 409.3 parts per million. These readings follow March monthly averages near 405 parts per million and precede an annual monthly peak in May that’s likely to hit above 407 parts per million and may strike as high as 409 parts per million. These are levels about 135 to 235 parts per million above the average interglacial to ice age range for CO2 levels during the relatively stable climate period of the last 2 million years.

In other words — atmospheric CO2 levels continue to climb into unprecedented ranges. Levels that are increasingly out-of-context scary. For we haven’t seen readings of this heat trapping gas hit so high in any time during at least the past 15 million years.

2016 Could See Atmospheric CO2 Increase by 3.1 to 5.1 Parts Per Million Above 2015

During a ‘normal’ year, if this period of reckless human fossil fuel burning can be rationally compared to anything ‘normal,’ we’d expect CO2 levels to rise by around 2 parts per million. Such a jump in the 2015 to 2016 period would result in monthly averages peaking around 406 parts per million by May. However, with a record El Nino and other influences producing large areas of abnormally warm sea surfaces, the world ocean’s ability to draw down both the massive human emission and the apparently much smaller, but seemingly growing, global carbon feedback has been hampered.



(Annual mean CO2 growth rate for 2016 is likely to hit even higher than records seen during 2015 due to the influence of a record El Nino on the world ocean system’s ability to draw down excess atmospheric carbon and due to the fact that global CO2 emission remain near record high levels set in 2014. Image source: NOAA ESRL.)

In 1998, during a then record El Nino and at a time when global carbon emissions from human sources were significantly lower than they are today and during a period when the global carbon stores appeared to be mostly dormant, atmospheric CO2 levels rose by a then record 2.9 parts per million. During 2015, as a record El Nino ramped up and as the global carbon stores continued their ominous rumbling, annual average increases hit a new high of 3.05 parts per million. But with the strongest El Nino impacts hampering ocean carbon draw-down extending on into the current year, it appears that 2016 average rates of atmospheric CO2 increase are likely to be even higher. Due to this, hopefully temporary, reduction in the ocean’s ability to take in atmospheric carbon, we’re likely to see May 2016 CO2 levels at Mauna Loa hit a range of 3.1 to 5.1 parts per million (407 to 409 ppm in total) above previous record high levels of around 403.9 parts per million for the same month during 2015.

The Last Time CO2 Values Were So High Was During the Middle Miocene — 15 Million Years in the Earth’s Deep Past

By any yardstick, these are extreme annual rates of atmospheric CO2 increase. Rates that are likely at least an order of magnitude faster than during the last hothouse extinction — the PETM — 55 million years ago. Just a few years ago, the scientific bodies of the world voiced serious concern about atmospheric CO2 levels equaling those seen during the Pliocene period — a geological epoch 3-5 million years ago when Earth temperatures were 2-3 C warmer than they are today and atmospheric CO2 levels ranged between 390 and 405 parts per million. But in just a brief interval, we’ve blown past that potential paleoclimate context and into another, more difficult, much warmer, world. A period further back into the great long ago when human civilization as it is today couldn’t have been imagined and a species called homo sapiens had millions of years yet to even begin to exist.



(For the week ending April 10, it appears that atmospheric CO2 levels have already averaged above 407 parts per million. Over the next two months, global atmospheric levels will reach new record highs likely in the range of 407 to 409 parts per million in the monthly values representing an extreme jump in readings of this key heat trapping gas. Image source: NOAA ESRL.)

For it’s been about 15 million years since we’ve seen atmospheric values of this critical greenhouse gas hit levels so high. Back then, the Earth was about 3-5 degrees Celsius hotter than the 19th Century and oceans were about 120 to 190 feet higher. Maintaining current greenhouse gas levels in this range for any extended will risk reverting to climate states similar to those of the Middle Miocene past — or potentially warmer if global carbon stores laid down during the period of the last 15 million years of cooling are again released into the Earth’s ocean and atmosphere.

At current annual rates of atmospheric CO2 increase, it will take between 20 and 50 years to exceed the Miocene and Ogliocene range of 405 to 520 parts per million CO2. At that point, we would be hitting CO2 levels high enough to wipe out most or all of the glacial ice on Earth. That’s basically what happens if we keep burning fossil fuels as we are now for another few decades.

In any case, it’s worth noting that 2016’s potential annual atmospheric CO2 increase of between 3.1 and 5.1 parts per million is extraordinarily bad. Something we shouldn’t be doing to the Earth’s climate system. There really is no other way to say it. Such rates of hothouse gas increases are absolutely terrible.

Is it possible that one of the carbon sinks has blown?


Most of the human race is standing with it's back to a tsunami 100 feet tall heading towards them. And likely it's already too late to run.

The 6th mass extinction is already underway and we will find out if we are going to be one of the causalties.

Really? Mass extinction? Can you name 5 species which have gone extinct due to climate change? Thought not...and yet, you hysterically claim we are in the midst of a mass extinction. You wackos are completely insane.
SD, it is a no win scenario, it's just mumbo jumbo that can never be proven. By him or you and me. So he can say it, means absolutely nothing at all. whooptido for him. Yep you can say that. I can say it won't, so he can prove me wrong.

Heck man, he can't even validate his CO2 claims anyway. Again, we know what we know cause we use common sense. he knows what he knows cause someone told him. I'm a much better person for my own thoughts than him repeating nonsense someone paid him to say.
 
Climate change is a dominant factor in all their endangerment.

I attended a charity film festival last weekend and there was an interesting film on coffee. All arabica coffee originates from Ethiopia where the wild plant is named "forest coffee". They have hundreds of varieties. The crops grown elsewhere have very limited genetic diversity and frequently go back to Ethiopia for new "blood". Unfortunately, rising temperatures in Ethiopia are driving wild coffee higher and higher into the mountains and thus into less area and reduced diversity. The Ethiopians have already given up any coffee growth in large portions of the country due to the inclement temperatures.

It's entirely possible that global coffee production could be dramatically curtailed in the coming decades.
it couldn't possibly be that the nutrients in the soil are changing because of the plants? Hmmmm, it happens in the US farm lands, it is why farmers sometimes grow different crops year to year or sometimes grow nothing in a field.
 

Forum List

Back
Top