PV Environmental Research Center, Brookhaven National Laboratory, Upton, New York, Center for Life Cycle Analysis, Columbia University, New York, New York, and Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
Received for review July 17, 2007
Revised manuscript received December 19, 2007
Accepted January 4, 2008
Abstract:
Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004–2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.
3 GHG and Criteria Pollutant Emissions
We estimate the emissions GHG, SO2, and NOx during the PV life cycles. Together with the heavy metal emissions assessed later in this paper, these emissions comprise the main hazards to the environment and human health from energy use and materials extraction during the PV life cycle. These emissions are normalized by the electricity generated during the life cycle of PV. The major parameters for the life cycle, i.e., lifetime electricity generation of a PV system, include conversion efficiency (E), solar insolation (I), performance ratio (PR), and lifetime (L). The total lifetime electricity generation (G) per m2 of PV module is calculated as follows: G = E × I × PR × L. We consistently use, for our own analysis, the Southern European average insolation of 1700 kWh/m2/yr, a performance ratio of 0.8, and a lifetime of 30 years.
Alsema and de Wild report that the GHG emissions of Si modules for the year 2004 are within the 30–45 g CO2-equiv/kWh range, with an EPBT of 1.7–2.7 years for a rooftop application under Southern European insolation of 1700 kWh/m2/yr and a performance ratio (PR) of 0.75 (8, 10). Their estimates are based on the electricity mixture for the current geographically specific production of Si (Figure 2, Case 1).