The Inconvenient Truth About Electric Vehicles

longknife

Diamond Member
Sep 21, 2012
42,221
13,088
2,250
Sin City
I know most of the Snowflakes here won’t bother to click on the link so I’m going to post most of this for them to read:

An electric auto will convert 5-10% of the energy in natural gas into motion. A normal vehicle will convert 20-30% of the energy in gasoline into motion. That's 3 or 4 times more energy recovered with an internal combustion vehicle than an electric vehicle.

Electricity is a specialty product. It's not appropriate for transportation. It looks cheap at this time, but that's because it was designed for toasters, not transportation. Increase the amount of wiring and infrastructure by a factor of a thousand, and it's not cheap.

Electricity does not scale up properly to the transportation level due to its miniscule nature. Sure, a whole lot can be used for something, but at extraordinary expense and materials.

Using electricity as an energy source requires two energy transformation steps, while using petroleum requires only one. With electricity, the original energy, usually chemical energy, must be transformed into electrical energy; and then the electrical energy is transformed into the kinetic energy of motion. With an internal combustion engine, the only transformation step is the conversion of chemical energy to kinetic energy in the combustion chamber.

The difference matters, because there is a lot of energy lost every time it is transformed or used. Electrical energy is harder to handle and loses more in handling.

The use of electrical energy requires it to move into and out of the space medium (aether) through induction. Induction through the aether medium should be referred to as another form of energy, but physicists sandwich it into the category of electrical energy. Going into and out of the aether through induction loses a lot of energy.

Another problem with electricity is that it loses energy to heat production due to resistance in the wires. A short transmission line will have 20% loss built in, and a long line will have 50% loss built in. These losses are designed in, because reducing the loss by half would require twice as much metal in the wires. Wires have to be optimized for diameter and strength, which means doubling the metal would be doubling the number of transmission lines.

High voltage transformers can get 90% efficiency with expensive designs, but household level voltages get 50% efficiency. Electric motors can get up to 60% efficiency, but only at optimum rpms and load. For autos, they average 25% efficiency. Gasoline engines get 25% efficiency with old-style carburetors and 30% with fuel injection, though additional loses can occur.

Applying this brilliant engineering to the problem yields this result: A natural gas electric generating turbine gets 40% efficiency. A high voltage transformer gets 90% efficiency. A household level transformer gets 50% efficiency. A short transmission line gets 20% loss, which is 80% efficiency. The total is 40% x 90% x 50% x 80% = 14.4% of the energy recovered before the electrical system does something similar to the gasoline engine in the vehicle. Some say the electricity performs a little better in the vehicle, but it's not much.

Electricity appears to be easy to handle sending it through wires. But it is the small scale that makes it look cheap. Scaling it up takes a pound of metal for so many electron-miles. Twice as much distance means twice as much metal. Twice as many amps means twice as much metal. Converting the transportation system into an electrical based system would require scaling up the amount of metal and electrical infrastructure by factors of hundreds or thousands. Where are all those lines going to go? They destroy environments. Where is that much natural gas going to come from for the electrical generators? There is very little natural gas in existence when using it for a large scale purpose. Natural gas has to be used with solar and wind energy, because only it can be turned on and off easily for backup.

One of the overwhelming facts about electric transportation is the chicken and egg phenomenon. Supposedly, a lot of electric vehicles will create an incentive to create a lot of expensive infrastructure. There are a lot of reasons why none of the goals can be met for such an infrastructure. The basic problem is that electricity will never be appropriate for such demanding use as general transportation, which means there will never be enough chickens or eggs to balance the demand. It's like trying to improve a backpack to such an extent that it will replace a pickup truck. The limitations of muscle metabolism are like the limitations of electrical energy.

Electrons are not a space-saving form of energy. Electrons have to be surrounded by large amounts of metal. It means electric motors get heavy and large. When cruising around town, the problems are not so noticeable. But the challenges of ruggedness are met far easier with internal combustion engines. Engineers say it is nice to get rid of the drive train with electric vehicles. But in doing so, they add clutter elsewhere, which adds weight, takes up space and messes up the suspension system. Out on the highway, the suspension system is the most critical factor.

These problems will prevent electric vehicles from replacing petroleum vehicles for all but specialty purposes. The infrastructure needed for electric vehicles will never exist when limited to specialty purposes. This would be true even with the perfect battery which takes up no space and holds infinite charge.

Okay, how does that make you feel? The main thing I notices was how the electricity has to be generated BEFORE it can be stored in a vehicle’s battery for use. Not ever efficient is it? Take one powered by LPN or Natural Gas – from the field to the pump to the vehicle.

This came from The Inconvenient Truth About Electric Vehicles | Zero Hedge
 
I know most of the Snowflakes here won’t bother to click on the link so I’m going to post most of this for them to read:

An electric auto will convert 5-10% of the energy in natural gas into motion. A normal vehicle will convert 20-30% of the energy in gasoline into motion. That's 3 or 4 times more energy recovered with an internal combustion vehicle than an electric vehicle.

Electricity is a specialty product. It's not appropriate for transportation. It looks cheap at this time, but that's because it was designed for toasters, not transportation. Increase the amount of wiring and infrastructure by a factor of a thousand, and it's not cheap.

Electricity does not scale up properly to the transportation level due to its miniscule nature. Sure, a whole lot can be used for something, but at extraordinary expense and materials.

Using electricity as an energy source requires two energy transformation steps, while using petroleum requires only one. With electricity, the original energy, usually chemical energy, must be transformed into electrical energy; and then the electrical energy is transformed into the kinetic energy of motion. With an internal combustion engine, the only transformation step is the conversion of chemical energy to kinetic energy in the combustion chamber.

The difference matters, because there is a lot of energy lost every time it is transformed or used. Electrical energy is harder to handle and loses more in handling.

The use of electrical energy requires it to move into and out of the space medium (aether) through induction. Induction through the aether medium should be referred to as another form of energy, but physicists sandwich it into the category of electrical energy. Going into and out of the aether through induction loses a lot of energy.

Another problem with electricity is that it loses energy to heat production due to resistance in the wires. A short transmission line will have 20% loss built in, and a long line will have 50% loss built in. These losses are designed in, because reducing the loss by half would require twice as much metal in the wires. Wires have to be optimized for diameter and strength, which means doubling the metal would be doubling the number of transmission lines.

High voltage transformers can get 90% efficiency with expensive designs, but household level voltages get 50% efficiency. Electric motors can get up to 60% efficiency, but only at optimum rpms and load. For autos, they average 25% efficiency. Gasoline engines get 25% efficiency with old-style carburetors and 30% with fuel injection, though additional loses can occur.

Applying this brilliant engineering to the problem yields this result: A natural gas electric generating turbine gets 40% efficiency. A high voltage transformer gets 90% efficiency. A household level transformer gets 50% efficiency. A short transmission line gets 20% loss, which is 80% efficiency. The total is 40% x 90% x 50% x 80% = 14.4% of the energy recovered before the electrical system does something similar to the gasoline engine in the vehicle. Some say the electricity performs a little better in the vehicle, but it's not much.

Electricity appears to be easy to handle sending it through wires. But it is the small scale that makes it look cheap. Scaling it up takes a pound of metal for so many electron-miles. Twice as much distance means twice as much metal. Twice as many amps means twice as much metal. Converting the transportation system into an electrical based system would require scaling up the amount of metal and electrical infrastructure by factors of hundreds or thousands. Where are all those lines going to go? They destroy environments. Where is that much natural gas going to come from for the electrical generators? There is very little natural gas in existence when using it for a large scale purpose. Natural gas has to be used with solar and wind energy, because only it can be turned on and off easily for backup.

One of the overwhelming facts about electric transportation is the chicken and egg phenomenon. Supposedly, a lot of electric vehicles will create an incentive to create a lot of expensive infrastructure. There are a lot of reasons why none of the goals can be met for such an infrastructure. The basic problem is that electricity will never be appropriate for such demanding use as general transportation, which means there will never be enough chickens or eggs to balance the demand. It's like trying to improve a backpack to such an extent that it will replace a pickup truck. The limitations of muscle metabolism are like the limitations of electrical energy.

Electrons are not a space-saving form of energy. Electrons have to be surrounded by large amounts of metal. It means electric motors get heavy and large. When cruising around town, the problems are not so noticeable. But the challenges of ruggedness are met far easier with internal combustion engines. Engineers say it is nice to get rid of the drive train with electric vehicles. But in doing so, they add clutter elsewhere, which adds weight, takes up space and messes up the suspension system. Out on the highway, the suspension system is the most critical factor.

These problems will prevent electric vehicles from replacing petroleum vehicles for all but specialty purposes. The infrastructure needed for electric vehicles will never exist when limited to specialty purposes. This would be true even with the perfect battery which takes up no space and holds infinite charge.

Okay, how does that make you feel? The main thing I notices was how the electricity has to be generated BEFORE it can be stored in a vehicle’s battery for use. Not ever efficient is it? Take one powered by LPN or Natural Gas – from the field to the pump to the vehicle.

This came from The Inconvenient Truth About Electric Vehicles | Zero Hedge
/---- Electric cars have a useful purpose in limited applications and the technology is improving. In another 20 years they could be a reliable substitute for gasoline engines. And I have no issue in owning an electric - as long as the top goes down and I can easily and quickly recharge or replace the battery at a station.
electric cars.jpg
 
The big problem with environmental transportation is fanaticism. You cannot erect a few windmills and expect them to provide energy to millions of electric cars. So in order to make e-cars non-polluting, we need large nuclear power plants everywhere unless a more powerful source or technology is found.
 
That OP was about the dumbest thing I have ever read. Factually wrong on almost every point.



So, let’s start with tank to wheel
One of the nice things about electric motors is that they operate efficiently over a wide range of speeds. An ICE varies between 0%, when idling, to something in the low to mid 30% range. An electric motor runs somewhere in the low 80’s to high 90% range over its entire RPM band.

There used to be a running debate about whether EV’s should have gears, generally two. That keeps the motor in the mid-to-high 90’s, but adds complexity. That debate is now over; no modern EV has more than a single fixed speed gear.

So in an EV there’s no major transmission system, driveshaft components, and in some designs, you don’t even have axles or differentials. A modern electric drivetrain is much simpler than a modern gasoline one, with parts counts that are tens or hundreds of times smaller.

In a typical car, the drivetrain eats up about 5 to 6% of the energy from the engine, in an electric design it’s close to 0%.

So, a rough estimate of the total round-trip tank to wheel efficiency is:

0.90 (motor and drivetrain) x 0.95 (inverter) x 0.90 (battery) x 0.95 (charger) = 73%

This number jives quite well with the claims of Tesla, which quotes a 75% round-trip efficiency. Tesla and Leaf owners report slightly lower real-world charging numbers, with the charger and battery portions of the cycle on the order of 80 to 85%. If we use those numbers we get:

0.90 (motor and drivetrain) x 0.95 (inverter) x 0.8 (battery and charger) = 68%

This isn’t a huge difference, so we’ll split it and call it 70%. How does this compare to a conventional car? Quite well in fact. A normal gasoline car has a tank-to-wheel efficiency of 16%.

That’s right, an electric car is over four times as efficient at turning energy into motion.
Wells to wheels: electric car efficiency
 
NG is burned in large turbines, basically jet engines, which spin generators. A turbine is about the same overall efficiency as a gas engine running at its peak, turning about 30% of the energy in the fuel into rotating shaft power. The rest, 70% of the energy, is lost as heat. But turbines have one additional trick… in your car that extra heat blows away through your radiator or out the tailpipe. But in a power plant, we can capture it. We use it to heat up water, boil it into steam, and then use the stream to drive another turbine. These “combined cycle” generators can be up to 60% efficient. When you factor in things like throttling and load following these numbers go down, but average numbers on the order of 50% are very common, and most modern plants are closer to 55%.

Then we have to get that power to you. Contrary to what you may have heard, the electrical grid is very efficient. The total losses in the US grid are only about 7%. This number keeps going down as we improve the systems.

0.5 (generator) x 0.93 (line losses) x 0.7 (entire car side) = 33%

Now we also have to get that gas to the NG power plant. The drilling and extraction requires energy equivalent to about 9% of the fuel, and shipping it in a pipeline is extremely efficient, accounting for about 1.5% of the energy. So that means the total cycle end-to-end is:

0.91 (extraction) x 0.985 (shipping) x 0.33 = 29%

And that estimate is definitely on the conservative side, most academic papers put it closer to 35 to 40%, 5 to 10% better than what I’ve calculated here.

So now we have a number that we really can compare directly to a gasoline car – we’re accounting for everything from the well to the wheel, and that number is around 30%.

So what’s a typical number for well-to-wheel for a conventional car? About 14%.

Wells to wheels: electric car efficiency

So, taking everything into account, the efficiency of an EV is about double that of a ICE if the electricity is generated by natural gas. However, here in Oregon, we have thousands of windmills, and several big dams, so an EV here is probably three times as efficient as a ICE. Now, anymore lies you would like to throw out there?
 
Ahhh, the professional pessimist strikes again! Waaah, things have problems and we should only use things that are perfect...

I think that's the OP''s point. Here, I'll do the sun next for an example.

Awww, the sun is so bad it causes skin cancer. Very bad! And sometimes it's so hawt that things catch fire! Terrible!
 
Ahhh, the professional pessimist strikes again! Waaah, things have problems and we should only use things that are perfect...

I think that's the OP''s point. Here, I'll do the sun next for an example.

Awww, the sun is so bad it causes skin cancer. Very bad! And sometimes it's so hawt that things catch fire! Terrible!


Everyone pretends they like sunny days, well...ask the people in Africa if they would like the option of less sun. Am I right? Less sun could be a good thing. Wouldn't that be nice?
 
As the renewables replace fossil fuels, and the grid becomes a distributed one, more and more people and businesses will become producers as well as users of electricity. Here is an look at the future for individual residences.

Tesla Solar
 
I did the first green thing I ever did by buying a new full size pickup with Flex Fuel. I can run E85 which the pump says is 51% to 83% ethanol and has a pretty picture of a corn on the cob and uses the word green. I notice that E85 has a little less performance compared to regular and the Ford lost its throaty sound but I can live with that. Bonus: E85 is 40 cents cheaper per gallon than regular.
 
Last edited:
I know most of the Snowflakes here won’t bother to click on the link so I’m going to post most of this for them to read:

An electric auto will convert 5-10% of the energy in natural gas into motion. A normal vehicle will convert 20-30% of the energy in gasoline into motion. That's 3 or 4 times more energy recovered with an internal combustion vehicle than an electric vehicle.

Electricity is a specialty product. It's not appropriate for transportation. It looks cheap at this time, but that's because it was designed for toasters, not transportation. Increase the amount of wiring and infrastructure by a factor of a thousand, and it's not cheap.

Electricity does not scale up properly to the transportation level due to its miniscule nature. Sure, a whole lot can be used for something, but at extraordinary expense and materials.

Using electricity as an energy source requires two energy transformation steps, while using petroleum requires only one. With electricity, the original energy, usually chemical energy, must be transformed into electrical energy; and then the electrical energy is transformed into the kinetic energy of motion. With an internal combustion engine, the only transformation step is the conversion of chemical energy to kinetic energy in the combustion chamber.

The difference matters, because there is a lot of energy lost every time it is transformed or used. Electrical energy is harder to handle and loses more in handling.

The use of electrical energy requires it to move into and out of the space medium (aether) through induction. Induction through the aether medium should be referred to as another form of energy, but physicists sandwich it into the category of electrical energy. Going into and out of the aether through induction loses a lot of energy.

Another problem with electricity is that it loses energy to heat production due to resistance in the wires. A short transmission line will have 20% loss built in, and a long line will have 50% loss built in. These losses are designed in, because reducing the loss by half would require twice as much metal in the wires. Wires have to be optimized for diameter and strength, which means doubling the metal would be doubling the number of transmission lines.

High voltage transformers can get 90% efficiency with expensive designs, but household level voltages get 50% efficiency. Electric motors can get up to 60% efficiency, but only at optimum rpms and load. For autos, they average 25% efficiency. Gasoline engines get 25% efficiency with old-style carburetors and 30% with fuel injection, though additional loses can occur.

Applying this brilliant engineering to the problem yields this result: A natural gas electric generating turbine gets 40% efficiency. A high voltage transformer gets 90% efficiency. A household level transformer gets 50% efficiency. A short transmission line gets 20% loss, which is 80% efficiency. The total is 40% x 90% x 50% x 80% = 14.4% of the energy recovered before the electrical system does something similar to the gasoline engine in the vehicle. Some say the electricity performs a little better in the vehicle, but it's not much.

Electricity appears to be easy to handle sending it through wires. But it is the small scale that makes it look cheap. Scaling it up takes a pound of metal for so many electron-miles. Twice as much distance means twice as much metal. Twice as many amps means twice as much metal. Converting the transportation system into an electrical based system would require scaling up the amount of metal and electrical infrastructure by factors of hundreds or thousands. Where are all those lines going to go? They destroy environments. Where is that much natural gas going to come from for the electrical generators? There is very little natural gas in existence when using it for a large scale purpose. Natural gas has to be used with solar and wind energy, because only it can be turned on and off easily for backup.

One of the overwhelming facts about electric transportation is the chicken and egg phenomenon. Supposedly, a lot of electric vehicles will create an incentive to create a lot of expensive infrastructure. There are a lot of reasons why none of the goals can be met for such an infrastructure. The basic problem is that electricity will never be appropriate for such demanding use as general transportation, which means there will never be enough chickens or eggs to balance the demand. It's like trying to improve a backpack to such an extent that it will replace a pickup truck. The limitations of muscle metabolism are like the limitations of electrical energy.

Electrons are not a space-saving form of energy. Electrons have to be surrounded by large amounts of metal. It means electric motors get heavy and large. When cruising around town, the problems are not so noticeable. But the challenges of ruggedness are met far easier with internal combustion engines. Engineers say it is nice to get rid of the drive train with electric vehicles. But in doing so, they add clutter elsewhere, which adds weight, takes up space and messes up the suspension system. Out on the highway, the suspension system is the most critical factor.

These problems will prevent electric vehicles from replacing petroleum vehicles for all but specialty purposes. The infrastructure needed for electric vehicles will never exist when limited to specialty purposes. This would be true even with the perfect battery which takes up no space and holds infinite charge.

Okay, how does that make you feel? The main thing I notices was how the electricity has to be generated BEFORE it can be stored in a vehicle’s battery for use. Not ever efficient is it? Take one powered by LPN or Natural Gas – from the field to the pump to the vehicle.

This came from The Inconvenient Truth About Electric Vehicles | Zero Hedge

Given that Trumploons are the shiniest most thin-skinned morons o the planet you probably shouldn't call others snowflakes.

And one doesn't need to be a snowflake to point out that you are lying loons
 
I know most of the Snowflakes here won’t bother to click on the link so I’m going to post most of this for them to read:

An electric auto will convert 5-10% of the energy in natural gas into motion. A normal vehicle will convert 20-30% of the energy in gasoline into motion. That's 3 or 4 times more energy recovered with an internal combustion vehicle than an electric vehicle.

Electricity is a specialty product. It's not appropriate for transportation. It looks cheap at this time, but that's because it was designed for toasters, not transportation. Increase the amount of wiring and infrastructure by a factor of a thousand, and it's not cheap.

Electricity does not scale up properly to the transportation level due to its miniscule nature. Sure, a whole lot can be used for something, but at extraordinary expense and materials.

Using electricity as an energy source requires two energy transformation steps, while using petroleum requires only one. With electricity, the original energy, usually chemical energy, must be transformed into electrical energy; and then the electrical energy is transformed into the kinetic energy of motion. With an internal combustion engine, the only transformation step is the conversion of chemical energy to kinetic energy in the combustion chamber.

The difference matters, because there is a lot of energy lost every time it is transformed or used. Electrical energy is harder to handle and loses more in handling.

The use of electrical energy requires it to move into and out of the space medium (aether) through induction. Induction through the aether medium should be referred to as another form of energy, but physicists sandwich it into the category of electrical energy. Going into and out of the aether through induction loses a lot of energy.

Another problem with electricity is that it loses energy to heat production due to resistance in the wires. A short transmission line will have 20% loss built in, and a long line will have 50% loss built in. These losses are designed in, because reducing the loss by half would require twice as much metal in the wires. Wires have to be optimized for diameter and strength, which means doubling the metal would be doubling the number of transmission lines.

High voltage transformers can get 90% efficiency with expensive designs, but household level voltages get 50% efficiency. Electric motors can get up to 60% efficiency, but only at optimum rpms and load. For autos, they average 25% efficiency. Gasoline engines get 25% efficiency with old-style carburetors and 30% with fuel injection, though additional loses can occur.

Applying this brilliant engineering to the problem yields this result: A natural gas electric generating turbine gets 40% efficiency. A high voltage transformer gets 90% efficiency. A household level transformer gets 50% efficiency. A short transmission line gets 20% loss, which is 80% efficiency. The total is 40% x 90% x 50% x 80% = 14.4% of the energy recovered before the electrical system does something similar to the gasoline engine in the vehicle. Some say the electricity performs a little better in the vehicle, but it's not much.

Electricity appears to be easy to handle sending it through wires. But it is the small scale that makes it look cheap. Scaling it up takes a pound of metal for so many electron-miles. Twice as much distance means twice as much metal. Twice as many amps means twice as much metal. Converting the transportation system into an electrical based system would require scaling up the amount of metal and electrical infrastructure by factors of hundreds or thousands. Where are all those lines going to go? They destroy environments. Where is that much natural gas going to come from for the electrical generators? There is very little natural gas in existence when using it for a large scale purpose. Natural gas has to be used with solar and wind energy, because only it can be turned on and off easily for backup.

One of the overwhelming facts about electric transportation is the chicken and egg phenomenon. Supposedly, a lot of electric vehicles will create an incentive to create a lot of expensive infrastructure. There are a lot of reasons why none of the goals can be met for such an infrastructure. The basic problem is that electricity will never be appropriate for such demanding use as general transportation, which means there will never be enough chickens or eggs to balance the demand. It's like trying to improve a backpack to such an extent that it will replace a pickup truck. The limitations of muscle metabolism are like the limitations of electrical energy.

Electrons are not a space-saving form of energy. Electrons have to be surrounded by large amounts of metal. It means electric motors get heavy and large. When cruising around town, the problems are not so noticeable. But the challenges of ruggedness are met far easier with internal combustion engines. Engineers say it is nice to get rid of the drive train with electric vehicles. But in doing so, they add clutter elsewhere, which adds weight, takes up space and messes up the suspension system. Out on the highway, the suspension system is the most critical factor.

These problems will prevent electric vehicles from replacing petroleum vehicles for all but specialty purposes. The infrastructure needed for electric vehicles will never exist when limited to specialty purposes. This would be true even with the perfect battery which takes up no space and holds infinite charge.

Okay, how does that make you feel? The main thing I notices was how the electricity has to be generated BEFORE it can be stored in a vehicle’s battery for use. Not ever efficient is it? Take one powered by LPN or Natural Gas – from the field to the pump to the vehicle.

This came from The Inconvenient Truth About Electric Vehicles | Zero Hedge

Given that Trumploons are the shiniest most thin-skinned morons o the planet you probably shouldn't call others snowflakes.

And one doesn't need to be a snowflake to point out that you are lying loons

Sticks and stones ..... :)
 
Longknife, I gave you the math that showed your OP was full of shit. Care to address that? Also, an ICE recovers no energy at all, where an EV with regenerative braking does recover energy whenever decelerating or going down hill.
 

Forum List

Back
Top