SSDD
New paper finds glaciers have been melting at the same rate since 1850, no acceleration predicted
A paper published today in The Cryosphere finds global glaciers melted at the same rate in the first half of the 20th century as in the second half. This implies no man-made influence on glacier melt, since the melting began naturally at the end of the Little Ice Age in 1850 with "safe" CO2 levels, and continued at the same rate throughout the 20th century with no acceleration. The authors predict glacier mass loss will continue at the same rate in the 21st century and have "relatively weak dependence" on future greenhouse gas emissions.
Now that is what SSDD states the paper says. However, going to the source, one can see that the paper does not state that at all. Here is the abstract of that paper;
TC - Abstract - Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change
The Cryosphere, 8, 59-71, 2014
www.the-cryosphere.net/8/59/2014/
doi:10.5194/tc-8-59-2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Article Metrics Related Articles
Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change
B. Marzeion1, A. H. Jarosch2, and J. M. Gregory3
1Center of Climate and Cryopshere, Institute of Meteorology and Geophysics, University of Innsbruck, Austria
2Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
3NCAS-Climate, University of Reading, Reading, and Met Office Hadley Centre, Exeter, UK
Abstract. Mass loss by glaciers has been an important contributor to sea level rise in the past, and is projected to contribute a substantial fraction of total sea level rise during the 21st century. Here, we use a model of the world's glaciers to quantify equilibrium sensitivities of global glacier mass to climate change, and to investigate the role of changes in glacier hypsometry for long-term mass changes. We find that 21st century glacier-mass loss is largely governed by the glacier's response to 20th century climate change. This limits the influence of 21st century climate change on glacier-mass loss, and explains why there are relatively small differences in glacier-mass loss under greatly different scenarios of climate change. The projected future changes in both temperature and precipitation experienced by glaciers are amplified relative to the global average. The projected increase in precipitation partly compensates for the mass loss caused by warming, but this compensation is negligible at higher temperature anomalies since an increasing fraction of precipitation at the glacier sites is liquid. Loss of low-lying glacier area, and more importantly, eventual complete disappearance of glaciers, strongly limit the projected sea level contribution from glaciers in coming centuries. The adjustment of glacier hypsometry to changes in the forcing strongly reduces the rates of global glacier-mass loss caused by changes in global mean temperature compared to rates of mass loss when hypsometric changes are neglected. This result is a second reason for the relatively weak dependence of glacier-mass loss on future climate scenario, and helps explain why glacier-mass loss in the first half of the 20th century was of the same order of magnitude as in the second half of the 20th century, even though the rate of warming was considerably smaller.
In other words, that is less alpine glacial ice to melt as the climate continues to warm. Most of the sea level rise from here on out will be from the contintental ice caps.