Oceans have acidified more in the last 200 years than they did in the previous 21000

Big deal. If every carbon bearing rock on the planet were burned it would lower the pH of the oceans from 8.1 to 8.0. And looky here, even wiki has to admit that acidification in the local areas probably won't be a problem because...wait for it....

"In shallower waters, it's undeniable that increased CO2 levels result in a decreased oceanic pH, which has a profound negative effect on corals.[21] Experiments suggest it is also very harmful to calcifying plankton.[22] However, the strong acids used to simulate the natural increase in acidity which would result from elevated CO2 concentrations may have given misleading results, and the most recent evidence is that coccolithophores (E. huxleyi at least) become more, not less, calcified and abundant in acidic waters.[23] Interestingly, no change in the distribution of calcareous nanoplankton such as the coccolithophores can be attributed to acidification during the PETM.[23] Acidification did lead to an abundance of heavily calcified algae[24] and weakly calcified forams.[25]"


So in one sentence they claim that acidified water will certainly kill everything, then in the next sentence they say..."well when we try and simulate the water we find that the little bastards actually become tougher (DAMN THEM!) and we find no evidence of acidified water actually killing anything (DAMN IT ALL TO HECK!)

Which isn't surprising when one considers that the corals that will supposedly die out with the massive acidification actually evolved when the CO2 levels were 20X higher then now.

More of those pesky facts you can't seem to figure out how to deal with.

Poor little silly people.


Paleocene


Wikipedia. OK. Sure.

By contrast, here we show, using the ophiuroid brittlestar Amphiura filiformis as a model calcifying organism, that some organisms can increase the rates of many of their biological processes (in this case, metabolism and the ability to calcify to compensate for increased seawater acidity). However, this upregulation of metabolism and calcification, potentially ameliorating some of the effects of increased acidity comes at a substantial cost (muscle wastage) and is therefore unlikely to be sustainable in the long term.

http://rspb.royalsocietypublishing.org/content/275/1644/1767.short
 
Last edited:
Were you born retarded or did your mother drop you on your head too many times?

Two thinsg:

1 Leave my Mom out of it
2 Go fuck yourself

and not necessarily in that order

Oh and go find us one (1) repeatable lab experiment that shows how a 100ppm increase in atmospheric CO2 acidifies the oceans

Genetic damage is the most probable explanation for your extreme retardation, frankie-boy, but we can't rule out careless parenting. It's obvious you got this way somehow. If you're old enough, I guess advanced senility might be the reason you're an idiot but that's usually kind of uneven and you seem to be continually moronic so I still suspect either a genetic defect or repeated blows to your unformed brain.

BTW, your idiotic notion that science only functions in laboratory settings and not in the real outside world is just tooooo frigging hilarious for words....ocean acidification is an observed phenomenon, not theoretical, dumbass....although it is supported by numerous experiments and the paleoclimate data, as well as the laws of physics....

If you can't show it in a lab where real scientists can verify your results, you're in the realm of astrology, phrenology, palmistry -- its just not science, fuck-o.
 
Two thinsg:

1 Leave my Mom out of it
2 Go fuck yourself

and not necessarily in that order

Oh and go find us one (1) repeatable lab experiment that shows how a 100ppm increase in atmospheric CO2 acidifies the oceans

Genetic damage is the most probable explanation for your extreme retardation, frankie-boy, but we can't rule out careless parenting. It's obvious you got this way somehow. If you're old enough, I guess advanced senility might be the reason you're an idiot but that's usually kind of uneven and you seem to be continually moronic so I still suspect either a genetic defect or repeated blows to your unformed brain.

BTW, your idiotic notion that science only functions in laboratory settings and not in the real outside world is just tooooo frigging hilarious for words....ocean acidification is an observed phenomenon, not theoretical, dumbass....although it is supported by numerous experiments and the paleoclimate data, as well as the laws of physics....

If you can't show it in a lab where real scientists can verify your results, you're in the realm of astrology, phrenology, palmistry -- its just not science, fuck-o.

May as well add astronomy, cosmology, and much of geology to that list. Can't remember the last time someone built a star or a universe in a lab, or plate tectonics.

In fact - by your logic - all of science is bunk.
Since we can't fit the universe in a laboratory, we can't scientifically study the universe. If we can't scientifically study the universe, then that leaves nothing for us to scientifically study, as every known physical thing is in the universe.
 
Do the Warmers and Decline Hiders not realize that Observation is the start, and not the end, of the scientific process?

How do they not know that? That's Day One 4th grade science
 
Genetic damage is the most probable explanation for your extreme retardation, frankie-boy, but we can't rule out careless parenting. It's obvious you got this way somehow. If you're old enough, I guess advanced senility might be the reason you're an idiot but that's usually kind of uneven and you seem to be continually moronic so I still suspect either a genetic defect or repeated blows to your unformed brain.

BTW, your idiotic notion that science only functions in laboratory settings and not in the real outside world is just tooooo frigging hilarious for words....ocean acidification is an observed phenomenon, not theoretical, dumbass....although it is supported by numerous experiments and the paleoclimate data, as well as the laws of physics....

If you can't show it in a lab where real scientists can verify your results, you're in the realm of astrology, phrenology, palmistry -- its just not science, fuck-o.

May as well add astronomy, cosmology, and much of geology to that list. Can't remember the last time someone built a star or a universe in a lab, or plate tectonics.

In fact - by your logic - all of science is bunk.
Since we can't fit the universe in a laboratory, we can't scientifically study the universe. If we can't scientifically study the universe, then that leaves nothing for us to scientifically study, as every known physical thing is in the universe.

Have you heard of particle accelerators?

How is it was can replicate condition a nanosecond after the big bang, but filling a bottle with an extra 100ppm of CO2 is beyond your capabilities?
 
If you can't show it in a lab where real scientists can verify your results, you're in the realm of astrology, phrenology, palmistry -- its just not science, fuck-o.

May as well add astronomy, cosmology, and much of geology to that list. Can't remember the last time someone built a star or a universe in a lab, or plate tectonics.

In fact - by your logic - all of science is bunk.
Since we can't fit the universe in a laboratory, we can't scientifically study the universe. If we can't scientifically study the universe, then that leaves nothing for us to scientifically study, as every known physical thing is in the universe.

Have you heard of particle accelerators?

Not one that can fit a star inside of it.

How is it was can replicate condition a nanosecond after the big bang,
We cannot replicate the big bang.
but filling a bottle with an extra 100ppm of CO2 is beyond your capabilities?

What good would that do? Is the atmosphere of the Earth contained in a bottle? I don't think so.
 
PHP:
Do the Warmers and Decline Hiders not realize that Observation is the start, and not the end, of the scientific process?

How do they not know that? That's Day One 4th grade science

Maybe someday you'll get beyond day one of 4th grade science, frankie-boy, but given how extremely retarded you are, that seems pretty unlikely.

Your complete cluelessness continues to be really hilarious to watch, you poor deluded moron. All of this climate science stuff is so far over your head, you might as well be standing at the bottom of the Marianas Trench spewing mindless gibberish about geo-syncronis communication satellites.
 
:blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup:
PHP:
Do the Warmers and Decline Hiders not realize that Observation is the start, and not the end, of the scientific process?

How do they not know that? That's Day One 4th grade science

Maybe someday you'll get beyond day one of 4th grade science, frankie-boy, but given how extremely retarded you are, that seems pretty unlikely.

Your complete cluelessness continues to be really hilarious to watch, you poor deluded moron. All of this climate science stuff is so far over your head, you might as well be standing at the bottom of the Marianas Trench spewing mindless gibberish about geo-syncronis communication satellites.



Thats right Nitz.......we're the assholes here!!!

Obama steers clear of climate change talk in speech - The Hill's E2-Wire


Geee.......that science is really mattering!!!:D:D:D:D:D:D:D:D:D:D:D:D
 
May as well add astronomy, cosmology, and much of geology to that list. Can't remember the last time someone built a star or a universe in a lab, or plate tectonics.

In fact - by your logic - all of science is bunk.
Since we can't fit the universe in a laboratory, we can't scientifically study the universe. If we can't scientifically study the universe, then that leaves nothing for us to scientifically study, as every known physical thing is in the universe.

Have you heard of particle accelerators?

Not one that can fit a star inside of it.

How is it was can replicate condition a nanosecond after the big bang,
We cannot replicate the big bang.
but filling a bottle with an extra 100ppm of CO2 is beyond your capabilities?

What good would that do? Is the atmosphere of the Earth contained in a bottle? I don't think so.

From Wiki, so has to be accurate.

Why can't you have those in a lab experiment?

Composition of dry atmosphere, by volume[2]
ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics))
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface
 
burger_king-3.jpg



How 'bout some links on the science subject of LOSING
 
PHP:
Do the Warmers and Decline Hiders not realize that Observation is the start, and not the end, of the scientific process?

How do they not know that? That's Day One 4th grade science

Maybe someday you'll get beyond day one of 4th grade science, frankie-boy, but given how extremely retarded you are, that seems pretty unlikely.

Your complete cluelessness continues to be really hilarious to watch, you poor deluded moron. All of this climate science stuff is so far over your head, you might as well be standing at the bottom of the Marianas Trench spewing mindless gibberish about geo-syncronis communication satellites.

From Wiki, so has to be accurate.

Why can't you have those in a lab experiment?

Composition of dry atmosphere, by volume[2]
ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics))
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface
 
PHP:
Do the Warmers and Decline Hiders not realize that Observation is the start, and not the end, of the scientific process?

How do they not know that? That's Day One 4th grade science

Maybe someday you'll get beyond day one of 4th grade science, frankie-boy, but given how extremely retarded you are, that seems pretty unlikely.

Your complete cluelessness continues to be really hilarious to watch, you poor deluded moron. All of this climate science stuff is so far over your head, you might as well be standing at the bottom of the Marianas Trench spewing mindless gibberish about geo-syncronis communication satellites.

From Wiki, so has to be accurate.

Why can't you have those in a lab experiment?

Composition of dry atmosphere, by volume[2]
ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics))
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface

bump
 
PHP:
Do the Warmers and Decline Hiders not realize that Observation is the start, and not the end, of the scientific process?

How do they not know that? That's Day One 4th grade science

Maybe someday you'll get beyond day one of 4th grade science, frankie-boy, but given how extremely retarded you are, that seems pretty unlikely.

Your complete cluelessness continues to be really hilarious to watch, you poor deluded moron. All of this climate science stuff is so far over your head, you might as well be standing at the bottom of the Marianas Trench spewing mindless gibberish about geo-syncronis communication satellites.

From Wiki, so has to be accurate.

Why can't you have those in a lab experiment?

Composition of dry atmosphere, by volume[2]
ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics))
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface

Anti-science reality deniers like you, frankie-boy, are always so confused and clueless.

I can't be bothered to copy all of the links and insert them so you'll just have to go to the original site to check the links.

Papers on laboratory measurements of CO2 absorption properties

September 25, 2009
(free to reproduce)

This is a list of papers on laboratory measurements of the absorption properties of carbon dioxide. In the context of these paperlists this is a difficult subject because only few of the papers are freely available online, so we have to settle on abstracts only (of course, interested reader can purchase the full texts for the papers from the linked abstract pages). However, I don’t think that matters that much because the main point of this list really is to show that the basic research on the subject exists. The list is not complete, and will most likely be updated in the future in order to make it more thorough and more representative.

UPDATE (February 6, 2010): Miller & Watts (1984) added.
UPDATE (July 25, 2010): I modified the introduction paragraph a little to reflect the current content of the list. The old text was a little outdated.
UPDATE (June 22, 2010): Lecher & Pernter (1881) added.
UPDATE (March 31, 2010): Tubbs & Williams (1972), Rubens & Aschkinass (1898) and Ångström (1900) added.
UPDATE (March 6, 2010): Barker (1922) added.
UPDATE (November 19, 2009): Predoi-Cross et al. (2007) added.
UPDATE (September 25, 2009): Miller & Brown (2004) added, thanks to John Cook for bringing it to my attention (see the discussion section below).

Spectroscopic database of CO2 line parameters: 4300–7000 cm−1 – Toth et al. (2008) “A new spectroscopic database for carbon dioxide in the near infrared is presented to support remote sensing of the terrestrial planets (Mars, Venus and the Earth). The compilation contains over 28,500 transitions of 210 bands from 4300 to 7000 cm−1…”

Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands, line mixing, and speed dependence – Predoi-Cross et al. (2007) “Transitions of pure carbon dioxide have been measured using a Fourier transform spectrometer in the 30012 ← 00001 and 30013 ← 00001 vibrational bands. The room temperature spectra, recorded at a resolution of 0.008 cm−1, were analyzed using the Voigt model and a Speed Dependent Voigt line shape model that includes a pressure dependent narrowing parameter. Intensities, self-induced pressure broadening, shifts, and weak line mixing coefficients are determined. The results obtained are consistent with other studies in addition to the theoretically calculated values.” [Full text]

Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment – Miller et al. (2005) “The space-based Orbiting Carbon Observatory (OCO) mission will achieve global measurements needed to distinguish spatial and temporal gradients in the CO2 column. Scheduled by NASA to launch in 2008, the instrument will obtain averaged dry air mole fraction (XCO2) with a precision of 1 part per million (0.3%) in order to quantify the variation of CO2 sources and sinks and to improve future climate forecasts. Retrievals of XCO2 from ground-based measurements require even higher precisions to validate the satellite data and link them accurately and without bias to the World Meteorological Organization (WMO) standard for atmospheric CO2 observations. These retrievals will require CO2 spectroscopic parameters with unprecedented accuracy. Here we present the experimental and data analysis methods implemented in laboratory studies in order to achieve this challenging goal.”

Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions – Miller & Brown (2004) “High-resolution near-infrared (4000–9000 cm-1) spectra of carbon dioxide have been recorded using the McMath–Pierce Fourier transform spectrometer at the Kitt Peak National Solar Observatory. Some 2500 observed positions have been used to determine spectroscopic constants for 53 different vibrational states of the 16O12C16O isotopologue, including eight vibrational states for which laboratory spectra have not previously been reported. … This work reduces CO2 near-infrared line position uncertainties by a factor of 10 or more compared to the 2000 HITRAN line list, which has not been modified since the comprehensive work of Rothman et al. [J. Quant. Spectrosc. Rad. Transfer 48 (1992) 537].” [Full text]

Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements – Niro et al. (2004) “Temperature (200–300 K) and pressure (70–200 atm) dependent laboratory measurements of infrared transmission by CO2–N2 mixtures have been made. From these experiments the absorption coefficient is reconstructed, over a range of several orders of magnitude, between 600 and 1000 cm−1.”

Collisional effects on spectral line-shapes – Boulet (2004) “The growing concern of mankind for the understanding and preserving of its environment has stimulated great interest for the study of planetary atmospheres and, first of all, for that of the Earth. Onboard spectrometers now provide more and more precise information on the transmission and emission of radiation by these atmospheres. Its treatment by ‘retrieval’ technics, in order to extract vertical profiles (pressure, temperature, volume mixing ratios) requires precise modeling of infrared absorption spectra. Within this framework, accounting for the influence of pressure on the absorption shape is crucial. These effects of inter-molecular collisions between the optically active species and the ‘perturbers’ are complex and of various types depending mostly on the density of perturbers. The present paper attempts to review and illustrate, through a few examples, the state of the art in this field.”

On far-wing Raman profiles by CO2 – Benech et al. (2002) “Despite the excellent agreement observed in N2 here, a substantial inconsistency between theory and experiment was found in the wing of the spectrum. Although the influence of other missing processes or neighboring bands cannot be totally excluded, our findings rather suggest that highly anisotropic perturbers, such as CO2, are improperly described when they are handled as point-like molecules, a cornerstone hypothesis in the approach employed.”

Collision-induced scattering in CO2 gas – Teboul et al. (1995) “Carbon-dioxide gas rototranslational scattering has been measured at 294.5 K in the frequency range 10–1000 cm−1 at 23 amagat. The depolarization ratio of scattered intensities in the frequency range 10–1000 cm−1 is recorded. The theoretical and experimental spectra in the frequency range 10–470 cm−1 are compared.”

The HITRAN database: 1986 edition – Rothman et al. (1987) “A description and summary of the latest edition of the AFGL HITRAN molecular absorption parameters database are presented. This new database combines the information for the seven principal atmospheric absorbers and twenty-one additional molecular species previously contained on the AFGL atmospheric absorption line parameter compilation and on the trace gas compilation.”

Rotational structure in the infrared spectra of carbon dioxide and nitrous oxide dimers – Miller & Watts (1984) “High-resolution infrared predissociation spectra have been measured for dilute mixtures of CO2 and N2O in helium. Rotational fine structure is clearly resolved for both (CO2)2 and (N2O)2, the linewidths being instrument-limited. This establishes that predissociation lifetimes are longer than approximately 50 ns.”

Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide – Tubbs & Williams (1972) “An evacuated high-resolution Czerny-Turner spectrograph, which is described in this paper, has been used to determine the strengths S and self-broadening parameters γ0 for lines in the R branch of the ν3 fundamental of 12C16O2 at 298 and at 207 K. The values of γ0 at 207 K are greater than those to be expected on the basis of a fixed collision cross section σ.”

Investigation of the Absorption of Infrared Radiation by Atmospheric Gases – Burch et al. (1970) “From spectral transmittance curves of very large samples of CO2 we have determined coefficients for intrinsic absorption and pressure-induced absorption from approximately 1130/cm to 1835/cm.”

Absorption of Infrared Radiant Energy by CO2 and H2O. IV. Shapes of Collision-Broadened CO2 Lines – Burch et al. (1969) “The shapes of the extreme wings of self-broadened CO2 lines have been investigated in three spectral regions near 7000, 3800, and 2400 cm−1. … New information has been obtained about the shapes of self-broadened CO2 lines as well as CO2 lines broadened by N2, O2, Ar, He, and H2.”

High-Temperature Spectral Emissivities and Total Intensities of the 15-µ Band System of CO2 – Ludwig et al. (1966) “Spectral-emissivity measurements of the 15-µ band of CO2 were made in the temperature range from 1000° to 2300°K.”

Line shape in the wing beyond the band head of the 4·3 μ band of CO2 – Winters et al. (1964) “Quantitative absorpance measurements have been made in pure CO2 and mixtures of CO2 with N2 and O2 in a 10 m White Perkin-Elmer cell. With absorbing paths up to 50 m-atm, results have been obtained from the band head at 2397 cm−1 to 2575 cm−1.”

Emissivity of Carbon Dioxide at 4.3 µ – Davies (1964) “The emissivity of carbon dioxide has been measured for temperatures from 1500° to 3000°K over the wavelength range from 4.40 to 5.30 µ.”

Absorption Line Broadening in the Infrared – Burch et al. (1962) “The effects of various gases on the absorption bands of nitrous oxide, carbon monoxide, methane, carbon dioxide, and water vapor have been investigated.”

Total Absorptance of Carbon Dioxide in the Infrared – Burch et al. (1962) “Total absorptance… has been determined as a function of absorber concentration w and equivalent pressure Pe for the major infrared absorption bands of carbon dioxide with centers at 3716, 3609, 2350, 1064, and 961 cm−1.”

Rotation-Vibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing Paths – Herzberg & Herzberg (1953) “The spectrum of CO2 in the photographic infrared has been studied with absorbing paths up to 5500 m. Thirteen absorption bands were found of which eleven have been analyzed in detail.”

The Infrared Absorption Spectrum of Carbon Dioxide – Martin & Barker (1932) “The complete infrared spectrum of CO2 may consistently be explained in terms of a linear symmetrical model, making use of the selection rules developed by Dennison and the resonance interaction introduced by Fermi. The inactive fundamental ν1 appears only in combination bands, but ν2 at 15μ and ν3 at 4.3μ absorb intensely.”

Carbon Dioxide Absorption in the Near Infra-Red – Barker (1922) “Infra-red absorption bands of CO2 at 2.7 and 4.3 μ. – New absorption curves have been obtained, using a special prism-grating double spectrometer of higher resolution (Figs. 1-3). The 2.7 μ region, heretofore considered to be a doublet, proves to be a pair of doublets, with centers at approximately 2.694 μ and 2.767 μ. The 4.3 μ band appears as a single doublet with center at 4.253 μ. The frequency difference between maxima is nearly the same for each of the three doublets, and equal to 4.5 x 1011. Complete resolution of the band series was not effected, even though the slit included only 12 A for the 2.7 μ region, but there is evidently a complicated structure, with a “head” in each case on the side of shorter wave-lengths. The existence of this head for the 4.3 μ band is also indicated by a comparison with the emission spectrum from a bunsen flame, and the difference in wave-length of the maxima of emission and absorption is explained as a temperature effect similar to that observed with other doublets.” [For free full text, click PDF or GIF links in the linked abstract page]

Ueber die Bedeutung des Wasserdampfes und der Kohlensäure bei der Absorption der Erdatmosphäre – Ångström (1900)

Observations on the Absorption and Emission of Aqueous Vapor and Carbon Dioxide in the Infra-Red Spectrum – Rubens & Aschkinass (1898) “Our experiments carried out as described above on the absorption spectrum carbon dioxide very soon showed that we were dealing with a single absorption band whose maximum lies near λ = 14.7 μ. … The whole region of absorption is limited to the interval from 12.5 μ to 16 μ, with the maximum at 14.7 μ.” [For free full text, click PDF or GIF links in the linked abstract page]

On the absorption of dark heat-rays by gases and vapours – Lecher & Pernter (1881) Svante Arrhenius wrote in his famous 1897 paper: “Tyndall held the opinion that the water-vapour has the greatest influence, whilst other authors, for instance Lecher and Pernter, are inclined to think that the carbonic acid plays the more important part.”.

The Bakerian Lecture – On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connexion of Radiation, Absorption, and Conduction – Tyndall (1861) 150 years ago John Tyndall already showed that carbon dioxide absorbs infrared radiation. [Full text] [Wikipedia: John Tyndall]

Closely related

The HITRAN Database – The laboratory work results on the absorption properties of carbon dioxide (and many other molecules) is contained in this database.


(In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.)
 
Last edited:
PHP:

Maybe someday you'll get beyond day one of 4th grade science, frankie-boy, but given how extremely retarded you are, that seems pretty unlikely.

Your complete cluelessness continues to be really hilarious to watch, you poor deluded moron. All of this climate science stuff is so far over your head, you might as well be standing at the bottom of the Marianas Trench spewing mindless gibberish about geo-syncronis communication satellites.

From Wiki, so has to be accurate.

Why can't you have those in a lab experiment?

Composition of dry atmosphere, by volume[2]
ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics))
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface

Anti-science reality deniers like you, frankie-boy, are always so confused and clueless.

I can't be bothered to copy all of the links and insert them so you'll just have to go to the original site to check the links.

Papers on laboratory measurements of CO2 absorption properties

September 25, 2009
(free to reproduce)

This is a list of papers on laboratory measurements of the absorption properties of carbon dioxide. In the context of these paperlists this is a difficult subject because only few of the papers are freely available online, so we have to settle on abstracts only (of course, interested reader can purchase the full texts for the papers from the linked abstract pages). However, I don’t think that matters that much because the main point of this list really is to show that the basic research on the subject exists. The list is not complete, and will most likely be updated in the future in order to make it more thorough and more representative.

UPDATE (February 6, 2010): Miller & Watts (1984) added.
UPDATE (July 25, 2010): I modified the introduction paragraph a little to reflect the current content of the list. The old text was a little outdated.
UPDATE (June 22, 2010): Lecher & Pernter (1881) added.
UPDATE (March 31, 2010): Tubbs & Williams (1972), Rubens & Aschkinass (1898) and Ångström (1900) added.
UPDATE (March 6, 2010): Barker (1922) added.
UPDATE (November 19, 2009): Predoi-Cross et al. (2007) added.
UPDATE (September 25, 2009): Miller & Brown (2004) added, thanks to John Cook for bringing it to my attention (see the discussion section below).

Spectroscopic database of CO2 line parameters: 4300–7000 cm−1 – Toth et al. (2008) “A new spectroscopic database for carbon dioxide in the near infrared is presented to support remote sensing of the terrestrial planets (Mars, Venus and the Earth). The compilation contains over 28,500 transitions of 210 bands from 4300 to 7000 cm−1…”

Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands, line mixing, and speed dependence – Predoi-Cross et al. (2007) “Transitions of pure carbon dioxide have been measured using a Fourier transform spectrometer in the 30012 ← 00001 and 30013 ← 00001 vibrational bands. The room temperature spectra, recorded at a resolution of 0.008 cm−1, were analyzed using the Voigt model and a Speed Dependent Voigt line shape model that includes a pressure dependent narrowing parameter. Intensities, self-induced pressure broadening, shifts, and weak line mixing coefficients are determined. The results obtained are consistent with other studies in addition to the theoretically calculated values.” [Full text]

Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment – Miller et al. (2005) “The space-based Orbiting Carbon Observatory (OCO) mission will achieve global measurements needed to distinguish spatial and temporal gradients in the CO2 column. Scheduled by NASA to launch in 2008, the instrument will obtain averaged dry air mole fraction (XCO2) with a precision of 1 part per million (0.3%) in order to quantify the variation of CO2 sources and sinks and to improve future climate forecasts. Retrievals of XCO2 from ground-based measurements require even higher precisions to validate the satellite data and link them accurately and without bias to the World Meteorological Organization (WMO) standard for atmospheric CO2 observations. These retrievals will require CO2 spectroscopic parameters with unprecedented accuracy. Here we present the experimental and data analysis methods implemented in laboratory studies in order to achieve this challenging goal.”

Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions – Miller & Brown (2004) “High-resolution near-infrared (4000–9000 cm-1) spectra of carbon dioxide have been recorded using the McMath–Pierce Fourier transform spectrometer at the Kitt Peak National Solar Observatory. Some 2500 observed positions have been used to determine spectroscopic constants for 53 different vibrational states of the 16O12C16O isotopologue, including eight vibrational states for which laboratory spectra have not previously been reported. … This work reduces CO2 near-infrared line position uncertainties by a factor of 10 or more compared to the 2000 HITRAN line list, which has not been modified since the comprehensive work of Rothman et al. [J. Quant. Spectrosc. Rad. Transfer 48 (1992) 537].” [Full text]

Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements – Niro et al. (2004) “Temperature (200–300 K) and pressure (70–200 atm) dependent laboratory measurements of infrared transmission by CO2–N2 mixtures have been made. From these experiments the absorption coefficient is reconstructed, over a range of several orders of magnitude, between 600 and 1000 cm−1.”

Collisional effects on spectral line-shapes – Boulet (2004) “The growing concern of mankind for the understanding and preserving of its environment has stimulated great interest for the study of planetary atmospheres and, first of all, for that of the Earth. Onboard spectrometers now provide more and more precise information on the transmission and emission of radiation by these atmospheres. Its treatment by ‘retrieval’ technics, in order to extract vertical profiles (pressure, temperature, volume mixing ratios) requires precise modeling of infrared absorption spectra. Within this framework, accounting for the influence of pressure on the absorption shape is crucial. These effects of inter-molecular collisions between the optically active species and the ‘perturbers’ are complex and of various types depending mostly on the density of perturbers. The present paper attempts to review and illustrate, through a few examples, the state of the art in this field.”

On far-wing Raman profiles by CO2 – Benech et al. (2002) “Despite the excellent agreement observed in N2 here, a substantial inconsistency between theory and experiment was found in the wing of the spectrum. Although the influence of other missing processes or neighboring bands cannot be totally excluded, our findings rather suggest that highly anisotropic perturbers, such as CO2, are improperly described when they are handled as point-like molecules, a cornerstone hypothesis in the approach employed.”

Collision-induced scattering in CO2 gas – Teboul et al. (1995) “Carbon-dioxide gas rototranslational scattering has been measured at 294.5 K in the frequency range 10–1000 cm−1 at 23 amagat. The depolarization ratio of scattered intensities in the frequency range 10–1000 cm−1 is recorded. The theoretical and experimental spectra in the frequency range 10–470 cm−1 are compared.”

The HITRAN database: 1986 edition – Rothman et al. (1987) “A description and summary of the latest edition of the AFGL HITRAN molecular absorption parameters database are presented. This new database combines the information for the seven principal atmospheric absorbers and twenty-one additional molecular species previously contained on the AFGL atmospheric absorption line parameter compilation and on the trace gas compilation.”

Rotational structure in the infrared spectra of carbon dioxide and nitrous oxide dimers – Miller & Watts (1984) “High-resolution infrared predissociation spectra have been measured for dilute mixtures of CO2 and N2O in helium. Rotational fine structure is clearly resolved for both (CO2)2 and (N2O)2, the linewidths being instrument-limited. This establishes that predissociation lifetimes are longer than approximately 50 ns.”

Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide – Tubbs & Williams (1972) “An evacuated high-resolution Czerny-Turner spectrograph, which is described in this paper, has been used to determine the strengths S and self-broadening parameters γ0 for lines in the R branch of the ν3 fundamental of 12C16O2 at 298 and at 207 K. The values of γ0 at 207 K are greater than those to be expected on the basis of a fixed collision cross section σ.”

Investigation of the Absorption of Infrared Radiation by Atmospheric Gases – Burch et al. (1970) “From spectral transmittance curves of very large samples of CO2 we have determined coefficients for intrinsic absorption and pressure-induced absorption from approximately 1130/cm to 1835/cm.”

Absorption of Infrared Radiant Energy by CO2 and H2O. IV. Shapes of Collision-Broadened CO2 Lines – Burch et al. (1969) “The shapes of the extreme wings of self-broadened CO2 lines have been investigated in three spectral regions near 7000, 3800, and 2400 cm−1. … New information has been obtained about the shapes of self-broadened CO2 lines as well as CO2 lines broadened by N2, O2, Ar, He, and H2.”

High-Temperature Spectral Emissivities and Total Intensities of the 15-µ Band System of CO2 – Ludwig et al. (1966) “Spectral-emissivity measurements of the 15-µ band of CO2 were made in the temperature range from 1000° to 2300°K.”

Line shape in the wing beyond the band head of the 4·3 μ band of CO2 – Winters et al. (1964) “Quantitative absorpance measurements have been made in pure CO2 and mixtures of CO2 with N2 and O2 in a 10 m White Perkin-Elmer cell. With absorbing paths up to 50 m-atm, results have been obtained from the band head at 2397 cm−1 to 2575 cm−1.”

Emissivity of Carbon Dioxide at 4.3 µ – Davies (1964) “The emissivity of carbon dioxide has been measured for temperatures from 1500° to 3000°K over the wavelength range from 4.40 to 5.30 µ.”

Absorption Line Broadening in the Infrared – Burch et al. (1962) “The effects of various gases on the absorption bands of nitrous oxide, carbon monoxide, methane, carbon dioxide, and water vapor have been investigated.”

Total Absorptance of Carbon Dioxide in the Infrared – Burch et al. (1962) “Total absorptance… has been determined as a function of absorber concentration w and equivalent pressure Pe for the major infrared absorption bands of carbon dioxide with centers at 3716, 3609, 2350, 1064, and 961 cm−1.”

Rotation-Vibration Spectra of Diatomic and Simple Polyatomic Molecules with Long Absorbing Paths – Herzberg & Herzberg (1953) “The spectrum of CO2 in the photographic infrared has been studied with absorbing paths up to 5500 m. Thirteen absorption bands were found of which eleven have been analyzed in detail.”

The Infrared Absorption Spectrum of Carbon Dioxide – Martin & Barker (1932) “The complete infrared spectrum of CO2 may consistently be explained in terms of a linear symmetrical model, making use of the selection rules developed by Dennison and the resonance interaction introduced by Fermi. The inactive fundamental ν1 appears only in combination bands, but ν2 at 15μ and ν3 at 4.3μ absorb intensely.”

Carbon Dioxide Absorption in the Near Infra-Red – Barker (1922) “Infra-red absorption bands of CO2 at 2.7 and 4.3 μ. – New absorption curves have been obtained, using a special prism-grating double spectrometer of higher resolution (Figs. 1-3). The 2.7 μ region, heretofore considered to be a doublet, proves to be a pair of doublets, with centers at approximately 2.694 μ and 2.767 μ. The 4.3 μ band appears as a single doublet with center at 4.253 μ. The frequency difference between maxima is nearly the same for each of the three doublets, and equal to 4.5 x 1011. Complete resolution of the band series was not effected, even though the slit included only 12 A for the 2.7 μ region, but there is evidently a complicated structure, with a “head” in each case on the side of shorter wave-lengths. The existence of this head for the 4.3 μ band is also indicated by a comparison with the emission spectrum from a bunsen flame, and the difference in wave-length of the maxima of emission and absorption is explained as a temperature effect similar to that observed with other doublets.” [For free full text, click PDF or GIF links in the linked abstract page]

Ueber die Bedeutung des Wasserdampfes und der Kohlensäure bei der Absorption der Erdatmosphäre – Ångström (1900)

Observations on the Absorption and Emission of Aqueous Vapor and Carbon Dioxide in the Infra-Red Spectrum – Rubens & Aschkinass (1898) “Our experiments carried out as described above on the absorption spectrum carbon dioxide very soon showed that we were dealing with a single absorption band whose maximum lies near λ = 14.7 μ. … The whole region of absorption is limited to the interval from 12.5 μ to 16 μ, with the maximum at 14.7 μ.” [For free full text, click PDF or GIF links in the linked abstract page]

On the absorption of dark heat-rays by gases and vapours – Lecher & Pernter (1881) Svante Arrhenius wrote in his famous 1897 paper: “Tyndall held the opinion that the water-vapour has the greatest influence, whilst other authors, for instance Lecher and Pernter, are inclined to think that the carbonic acid plays the more important part.”.

The Bakerian Lecture – On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physical Connexion of Radiation, Absorption, and Conduction – Tyndall (1861) 150 years ago John Tyndall already showed that carbon dioxide absorbs infrared radiation. [Full text] [Wikipedia: John Tyndall]

Closely related

The HITRAN Database – The laboratory work results on the absorption properties of carbon dioxide (and many other molecules) is contained in this database.

The squid defense. Spew a lot of ink and hope no one notices you didn't address the question.

CO2 has "absorption properties", is that why you can't replicate the chemical composition of Earth atmosphere in a lab?

Here it is again:
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface
 
Last edited:
The squid defense. Spew a lot of ink and hope no one notices you didn't address the question.

LOLOLOL....you don't have any actual questions, freakie-boy, just monumental stupidity and willful ignorance.

Does the "Absorption Properties" of CO2 keep you from replicating these gasses in these quantities in a lab?

Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface
 
Do any of those paper show how a 50-100PPM increase in CO2 increases the "Absorption properties" of COS that it raises temperature 5 degrees, spawn Cat V huurricanes and melts the Arctic floor?

Why don't you take one flask with this:
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 390 ppmv (0.039%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface


and another with this:
Gas Volume
Nitrogen (N2) 780,840 ppmv (78.084%)
Oxygen (O2) 209,460 ppmv (20.946%)
Argon (Ar) 9,340 ppmv (0.9340%)
Carbon dioxide (CO2) 490 ppmv (0.049%)
Neon (Ne) 18.18 ppmv (0.001818%)
Helium (He) 5.24 ppmv (0.000524%)
Methane (CH4) 1.79 ppmv (0.000179%)
Krypton (Kr) 1.14 ppmv (0.000114%)
Hydrogen (H2) 0.55 ppmv (0.000055%)
Nitrous oxide (N2O) 0.3 ppmv (0.00003%)
Carbon monoxide (CO) 0.1 ppmv (0.00001%)
Xenon (Xe) 0.09 ppmv (9×10−6%) (0.000009%)
Ozone (O3) 0.0 to 0.07 ppmv (0 to 7×10−6%)
Nitrogen dioxide (NO2) 0.02 ppmv (2×10−6%) (0.000002%)
Iodine (I2) 0.01 ppmv (1×10−6%) (0.000001%)
Ammonia (NH3) trace
Not included in above dry atmosphere:
Water vapor (H2O) ~0.40% over full atmosphere, typically 1%-4% at surface

and see what happens?
 
Big deal. If every carbon bearing rock on the planet were burned it would lower the pH of the oceans from 8.1 to 8.0. And looky here, even wiki has to admit that acidification in the local areas probably won't be a problem because...wait for it....

"In shallower waters, it's undeniable that increased CO2 levels result in a decreased oceanic pH, which has a profound negative effect on corals.[21] Experiments suggest it is also very harmful to calcifying plankton.[22] However, the strong acids used to simulate the natural increase in acidity which would result from elevated CO2 concentrations may have given misleading results, and the most recent evidence is that coccolithophores (E. huxleyi at least) become more, not less, calcified and abundant in acidic waters.[23] Interestingly, no change in the distribution of calcareous nanoplankton such as the coccolithophores can be attributed to acidification during the PETM.[23] Acidification did lead to an abundance of heavily calcified algae[24] and weakly calcified forams.[25]"


So in one sentence they claim that acidified water will certainly kill everything, then in the next sentence they say..."well when we try and simulate the water we find that the little bastards actually become tougher (DAMN THEM!) and we find no evidence of acidified water actually killing anything (DAMN IT ALL TO HECK!)

Which isn't surprising when one considers that the corals that will supposedly die out with the massive acidification actually evolved when the CO2 levels were 20X higher then now.

More of those pesky facts you can't seem to figure out how to deal with.

Poor little silly people.


Paleocene


Wikipedia. OK. Sure.

By contrast, here we show, using the ophiuroid brittlestar Amphiura filiformis as a model calcifying organism, that some organisms can increase the rates of many of their biological processes (in this case, metabolism and the ability to calcify to compensate for increased seawater acidity). However, this upregulation of metabolism and calcification, potentially ameliorating some of the effects of increased acidity comes at a substantial cost (muscle wastage) and is therefore unlikely to be sustainable in the long term.

Ocean acidification may increase calcification rates, but at a cost





I use wiki for the poor cultists here. It seems to be the limit of their cognative ability.
 

Forum List

Back
Top