304. Types of Bursts.
The relative effects of blast, heat, and nuclear radiation will largely be determined by the altitude at which the weapon is detonated. Nuclear explosions are generally classified as air bursts, surface bursts, subsurface bursts, or high altitude bursts.
a. Air Bursts. An air burst is an explosion in which a weapon is detonated in air at an altitude below 30 km but at sufficient height that the fireball does not contact the surface of the earth. After such a burst, blast may cause considerable damage and injury. The altitude of an air burst can be varied to obtain maximum blast effects, maximum thermal effects, desired radiation effects, or a balanced combination of these effects. Burns to exposed skin may be produced over many square kilometers and eye injuries over a still larger area. Initial nuclear radiation will be a significant hazard with smaller weapons, but the fallout hazard can be ignored as there is essentially no local fallout from an air burst. The fission products are generally dispersed over a large area of the globe unless there is local rainfall resulting in localized fallout. In the vicinity of ground zero, there may be a small area of neutron-induced activity which could be hazardous to troops required to pass through the area. Tactically, air bursts are the most likely to be used against ground forces.
b. Surface Burst. A surface burst is an explosion in which a weapon is detonated on or slightly above the surface of the earth so that the fireball actually touches the land or water surface. Under these conditions, the area affected by blast, thermal radiation, and initial nuclear radiation will be less extensive than for an air burst of similar yield, except in the region of ground zero where destruction is concentrated. In contrast with air bursts, local fallout can be a hazard over a much larger downwind area than that which is affected by blast and thermal radiation.
c. Subsurface Burst. A subsurface burst is an explosion in which the point of the detonation is beneath the surface of land or water. Cratering will generally result from an underground burst, just as for a surface burst. If the burst does not penetrate the surface, the only other hazard will be from ground or water shock. If the burst is shallow enough to penetrate the surface, blast, thermal, and initial nuclear radiation effects will be present, but will be less than for a surface burst of comparable yield. Local fallout will be very heavy if penetration occurs.
d. High Altitude Burst. A high altitude burst is one in which the weapon is exploded at such an altitude (above 30 km) that initial soft x-rays generated by the detonation dissipate energy as heat in a much larger volume of air molecules. There the fireball is much larger and expands much more rapidly. The ionizing radiation from the high altitude burst can travel for hundreds of miles before being absorbed. Significant ionization of the upper atmosphere (ionosphere) can occur. Severe disruption in communications can occur following high altitude bursts. They also lead to generation of an intense electromagnetic pulse (EMP) which can significantly degrade performance of or destroy sophisticated electronic equipment. There are no known biological effects of EMP; however, indirect effects may result from failure of critical medical equipment.