So rollingthunder
Have we or have we not been though ice ages before?
Are you really silly enough to think that this question has any relevance to the current abrupt warming? LOL.
Yes, the Earth has been through a number of ice ages. So what? Scientists have figured out the probable natural causes and mechanisms involved in producing an ice age and in ending them and none of those factors are involved in the current abrupt warming except for rising CO2 levels.
Causes of ice ages
The causes of ice ages are not fully understood for both the large-scale ice age periods and the smaller ebb and flow of glacial–interglacial periods within an ice age. The consensus is that several factors are important: atmospheric composition (the concentrations of carbon dioxide, methane); changes in the Earth's orbit around the Sun known as Milankovitch cycles (and possibly the Sun's orbit around the galaxy); the motion of tectonic plates resulting in changes in the relative location and amount of continental and oceanic crust on the Earth's surface, which affect wind and ocean currents; variations in solar output; the orbital dynamics of the Earth-Moon system; and the impact of relatively large meteorites, and volcanism including eruptions of supervolcanoes.
Some of these factors influence each other. For example, changes in Earth's atmospheric composition (especially the concentrations of greenhouse gases) may alter the climate, while climate change itself can change the atmospheric composition (for example by changing the rate at which weathering removes CO2).
Maureen Raymo, William Ruddiman and others propose that the Tibetan and Colorado Plateaus are immense CO2 "scrubbers" with a capacity to remove enough CO2 from the global atmosphere to be a significant causal factor of the 40 million year Cenozoic Cooling trend. They further claim that approximately half of their uplift (and CO2 "scrubbing" capacity) occurred in the past 10 million years.[34][35]
Changes in Earth's atmosphere
There is evidence that greenhouse gas levels fell at the start of ice ages and rose during the retreat of the ice sheets, but it is difficult to establish cause and effect (see the notes above on the role of weathering). Greenhouse gas levels may also have been affected by other factors which have been proposed as causes of ice ages, such as the movement of continents and volcanism.
The Snowball Earth hypothesis maintains that the severe freezing in the late Proterozoic was ended by an increase in CO2 levels in the atmosphere, and some supporters of Snowball Earth argue that it was caused by a reduction in atmospheric CO2. The hypothesis also warns of future Snowball Earths.
The August 2009 edition of Science provides further evidence that changes in solar insolation provide the initial trigger for the Earth to warm after an Ice Age, with secondary factors like increases in greenhouse gases accounting for the magnitude of the change.[36]
William Ruddiman has proposed the early anthropocene hypothesis, according to which the anthropocene era, as some people call the most recent period in the Earth's history when the activities of the human race first began to have a significant global impact on the Earth's climate and ecosystems, did not begin in the 18th century with the advent of the Industrial Era, but dates back to 8,000 years ago, due to intense farming activities of our early agrarian ancestors. It was at that time that atmospheric greenhouse gas concentrations stopped following the periodic pattern of the Milankovitch cycles. In his overdue-glaciation hypothesis Ruddiman states that an incipient ice age would probably have begun several thousand years ago, but the arrival of that scheduled ice age was forestalled by the activities of early farmers.[37]
Position of the continents
The geological record appears to show that ice ages start when the continents are in positions which block or reduce the flow of warm water from the equator to the poles and thus allow ice sheets to form. The ice sheets increase the Earth's reflectivity and thus reduce the absorption of solar radiation. With less radiation absorbed the atmosphere cools; the cooling allows the ice sheets to grow, which further increases reflectivity in a positive feedback loop. The ice age continues until the reduction in weathering causes an increase in the greenhouse effect.
There are three known configurations of the continents which block or reduce the flow of warm water from the equator to the poles:
* A continent sits on top of a pole, as Antarctica does today.
* A polar sea is almost land-locked, as the Arctic Ocean is today.
* A supercontinent covers most of the equator, as Rodinia did during the Cryogenian period.
Since today's Earth has a continent over the South Pole and an almost land-locked ocean over the North Pole, geologists believe that Earth will continue to endure glacial periods in the geologically near future.
Some scientists believe that the Himalayas are a major factor in the current ice age, because these mountains have increased Earth's total rainfall and therefore the rate at which CO2 is washed out of the atmosphere, decreasing the greenhouse effect.[35] The Himalayas' formation started about 70 million years ago when the Indo-Australian Plate collided with the Eurasian Plate, and the Himalayas are still rising by about 5 mm per year because the Indo-Australian plate is still moving at 67 mm/year. The history of the Himalayas broadly fits the long-term decrease in Earth's average temperature since the mid-Eocene, 40 million years ago.
Fluctuations in ocean currents
Another important contribution to ancient climate regimes is the variation of ocean currents, which are modified by continent position, sea levels and salinity, as well as other factors. They have the ability to cool (e.g. aiding the creation of Antarctic ice) and the ability to warm (e.g. giving the British Isles a temperate as opposed to a boreal climate). The closing of the Isthmus of Panama about 3 million years ago may have ushered in the present period of strong glaciation over North America by ending the exchange of water between the tropical Atlantic and Pacific Oceans.[38]
Analyses suggest that ocean current fluctuations can adequately account for recent glacial oscillations. During the last glacial period the sea-level has fluctuated 20–30 m as water was sequestered, primarily in the northern hemisphere ice sheets. When ice collected and the sea level dropped sufficiently, flow through the Bering Strait (the narrow strait between Siberia and Alaska is ~50 m deep today) was reduced, resulting in increased flow from the North Atlantic. This realigned the thermohaline circulation in the Atlantic, increasing heat transport into the Arctic, which melted the polar ice accumulation and reduced other continental ice sheets. The release of water raised sea levels again, restoring the ingress of colder water from the Pacific with an accompanying shift to northern hemisphere ice accumulation.[39]
Uplift of the Tibetan plateau and surrounding mountain areas above the snowline
Matthias Kuhle's geological theory of Ice Age development was suggested by the existence of an ice sheet covering the Tibetan plateau during the Ice Ages (Last Glacial Maximum?). According to Kuhle, the plate-tectonic uplift of Tibet past the snow-line has led to a c. 2.4 million km² ice surface with a 70% greater albedo than the bare land surface. The reflection of energy into space resulted in a global cooling, triggering the Pleistocene Ice Age. Because this highland is at a subtropical latitude, with 4 to 5 times the insolation of high-latitude areas, what would be Earth's strongest heating surface has turned into a cooling surface.
Kuhle explains the interglacial periods by the 100 000-year cycle of radiation changes due to variations of the Earth's orbit. This comparatively insignificant warming, when combined with the lowering of the Nordic inland ice areas and Tibet due to the weight of the superimposed ice-load, has led to the repeated complete thawing of the inland ice areas.[40][41][42]
Variations in Earth's orbit (Milankovitch cycles)
The Milankovitch cycles are a set of cyclic variations in characteristics of the Earth's orbit around the sun. Each cycle has a different length, so at some times their effects reinforce each other and at other times they (partially) cancel each other.
It is very unlikely that the Milankovitch cycles can start or end an ice age (series of glacial periods):
* Even when their effects reinforce each other they are not strong enough.
* The "peaks" (effects reinforce each other) and "troughs" (effects cancel each other) are much more regular and much more frequent than the observed ice ages.
Past and future of daily average insolation at top of the atmosphere on the day of the summer solstice, at 65 N latitude.
In contrast, there is strong evidence that the Milankovitch cycles affect the occurrence of glacial and interglacial periods within an ice age. The present ice ages are the most studied and best understood, particularly the last 400,000 years, since this is the period covered by ice cores that record atmospheric composition and proxies for temperature and ice volume. Within this period, the match of glacial/interglacial frequencies to the Milanković orbital forcing periods is so close that orbital forcing is generally accepted. The combined effects of the changing distance to the Sun, the precession of the Earth's axis, and the changing tilt of the Earth's axis redistribute the sunlight received by the Earth. Of particular importance are changes in the tilt of the Earth's axis, which affect the intensity of seasons. For example, the amount of solar influx in July at 65 degrees north latitude varies by as much as 25% (from 450 W/m² to 550 W/m²). It is widely believed that ice sheets advance when summers become too cool to melt all of the accumulated snowfall from the previous winter. Some workers believe that the strength of the orbital forcing is too small to trigger glaciations, but feedback mechanisms like CO2 may explain this mismatch.
While Milankovitch forcing predicts that cyclic changes in the Earth's orbital elements can be expressed in the glaciation record, additional explanations are necessary to explain which cycles are observed to be most important in the timing of glacial–interglacial periods. In particular, during the last 800,000 years, the dominant period of glacial–interglacial oscillation has been 100,000 years, which corresponds to changes in Earth's orbital eccentricity and orbital inclination. Yet this is by far the weakest of the three frequencies predicted by Milankovitch. During the period 3.0–0.8 million years ago, the dominant pattern of glaciation corresponded to the 41,000-year period of changes in Earth's obliquity (tilt of the axis). The reasons for dominance of one frequency versus another are poorly understood and an active area of current research, but the answer probably relates to some form of resonance in the Earth's climate system.
The "traditional" Milankovitch explanation struggles to explain the dominance of the 100,000-year cycle over the last 8 cycles. Richard A. Muller and Gordon J. MacDonald [1] [2] [3] and others have pointed out that those calculations are for a two-dimensional orbit of Earth but the three-dimensional orbit also has a 100,000-year cycle of orbital inclination. They proposed that these variations in orbital inclination lead to variations in insolation, as the earth moves in and out of known dust bands in the solar system. Although this is a different mechanism to the traditional view, the "predicted" periods over the last 400,000 years are nearly the same. The Muller and MacDonald theory, in turn, has been challenged by Jose Antonio Rial [4].
Another worker, William Ruddiman, has suggested a model that explains the 100,000-year cycle by the modulating effect of eccentricity (weak 100,000-year cycle) on precession (26,000-year cycle) combined with greenhouse gas feedbacks in the 41,000- and 26,000-year cycles. Yet another theory has been advanced by Peter Huybers who argued that the 41,000-year cycle has always been dominant, but that the Earth has entered a mode of climate behavior where only the second or third cycle triggers an ice age. This would imply that the 100,000-year periodicity is really an illusion created by averaging together cycles lasting 80,000 and 120,000 years (Nature 434, 2005, [5]). This theory is consistent with a simple empirical multi-state model proposed by Didier Paillard [6]. Paillard suggests that the late Pleistocene glacial cycles can be seen as jumps between three quasi-stable climate states. The jumps are induced by the orbital forcing, while in the early Pleistocene the 41,000-year glacial cycles resulted from jumps between only two climate states. A dynamical model explaining this behavior was proposed by Peter Ditlevsen [7]. This is in support of the suggestion that the late Pleistocene glacial cycles are not due to the weak 100,000-year eccentricity cycle, but a non-linear response to mainly the 41,000-year obliquity cycle.
Variations in the Sun's energy output
There are at least two types of variation in the Sun's energy output:
* In the very long term, astrophysicists believe that the sun's output increases by about 10%, every 1-billion (109) years.
* Shorter-term variations such as sunspot cycles, and longer episodes such as the Maunder minimum, which occurred during the coldest part of the Little Ice Age.
The long-term increase in the Sun's output cannot be a cause of ice ages.
Volcanism
Volcanic eruptions may have contributed to the inception and/or the end of ice age periods. One suggested[who?] explanation of the Paleocene-Eocene Thermal Maximum is that undersea volcanoes released methane from clathrates and thus caused a large and rapid increase in the greenhouse effect. There appears to be no geological evidence for such eruptions at the right time, but this does not prove they did not happen.