Old Rocks
Diamond Member
Real research that will lead to very cheap solar power.
Quantum dots for highly efficient solar cells - physicsworld.com
The efficiency of solar cells could be increased to more than 60% from the current limit of just 30% according to new work by scientists in Minneapolis and Texas. The new work involves capturing the higher-energy sunlight that is normally lost as heat in conventional devices using semiconductor nanocrystals, or quantum dots.
The maximum efficiency of conventional solar cells made from silicon-based semiconductors is limited by theory to around 31% – and the best performing affordable commercial devices are less than 20% efficient. This is because in typical devices, photons with energies above the semiconductor's bandgap generate "hot" charge carriers (electrons and holes) that quickly cool to the band edges in a matter of just picoseconds, releasing phonons (vibrations of the crystal lattice, or heat). If the energy of these hot electrons could be captured before it is converted into wasted heat, solar-to-electric power-conversion efficiencies could be increased to as high as 66%, say scientists.
Quantum dots for highly efficient solar cells - physicsworld.com
The efficiency of solar cells could be increased to more than 60% from the current limit of just 30% according to new work by scientists in Minneapolis and Texas. The new work involves capturing the higher-energy sunlight that is normally lost as heat in conventional devices using semiconductor nanocrystals, or quantum dots.
The maximum efficiency of conventional solar cells made from silicon-based semiconductors is limited by theory to around 31% – and the best performing affordable commercial devices are less than 20% efficient. This is because in typical devices, photons with energies above the semiconductor's bandgap generate "hot" charge carriers (electrons and holes) that quickly cool to the band edges in a matter of just picoseconds, releasing phonons (vibrations of the crystal lattice, or heat). If the energy of these hot electrons could be captured before it is converted into wasted heat, solar-to-electric power-conversion efficiencies could be increased to as high as 66%, say scientists.