That is clearly laid out in his fully accessible study at
Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature - IOPscience. Don't tell me you haven't read it.
This study? By whom? When? Where? I suggest this is another of your lies.
You know, it's not my fault that I've embarrassed you so many times. You're the one that keeps posting idiocy.
You have no idea what I have and haven't read so you haven't "busted" shit.
As to the papers available to me on this topic: The text below is the first page of the Reference section of Chapter 1 of AR6's "The Physical Science Basis". There are 38 separate studies listed below, originally in two columns. I did some counting and found that over ten such pages, the average was 36.4 studies per page. Throughout all of "The Physical Science Basis", there are 12 chapters whose reference sections contain a total of 455 pages of study listings. At 36.4 studies per page, that comes to 16,562 studies listed. And this is ONLY in Working Group I's "The Physical Science Basis". It does not include studies listed in "Impacts, Adaptation and Vulnerability" from Working Group II nor "Mitigation of Climate Change" from Working Group III. Nor does this count included studies listed in the first, second, third, fourth or fifth assessment reports. So when I say I have thousands of climate papers available to me, I am speaking the truth.
1) Abraham, J.P. et al., 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Reviews of Geophysics, 51(3), 450–483, doi:10.1002/rog.20022.
2) Abram, N. et al., 2019: Framing and Context of the Report. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O., D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, and N.M. Weyer (eds.)]. In Press, pp. 73–129,
www.ipcc.ch/srocc/chapter/ chapter-1-framing-and-context-of-the-report.
3) Abram, N.J. et al., 2016: Early onset of industrial-era warming across the oceans and continents. Nature, 536(7617), 411–418, doi:10.1038/nature19082.
4) Abramowitz, G. et al., 2019: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing. Earth System Dynamics, 10(1), 91–105, doi:10.5194/esd-10-91-2019.
5) Adler, C.E. and G. Hirsch Hadorn, 2014: The IPCC and treatment of uncertainties: topics and sources of dissensus. WIREs Climate Change, 5(5), 663–676, doi:10.1002/wcc.297.
6) Aguilera-Betti, I. et al., 2017: The First Millennium-Age Araucaria Araucana in Patagonia. Tree-Ring Research, 73(1), 53–56, doi:10.3959/ 1536-1098-73.1.53.
7) Ahn, M.-S. et al., 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dynamics, 49(11–12), 4023–4045, doi:10.1007/s00382-017-3558-4.
8) Air Ministry – Meteorological Office, 1921: Réseau Mondial, 1914: Monthly and Annual Summaries of Pressure, Temperature, and Precipitation At Land Stations. H.M. Stationery Office, London, UK, iii-vii pp.
9) Aitken, J., 1889: I. – On the Number of Dust Particles in the Atmosphere. Transactions of the Royal Society of Edinburgh, 35(1), 1–19, doi:10.1017/ s0080456800017592.
10) Albrecht, B.A., 1989: Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 245(4923), 1227–1230, doi:10.1126/science.245.4923.1227.
11) Alexander, C. et al., 2011: Linking Indigenous and Scientific Knowledge of Climate Change. BioScience, 61(6), 477–484, doi:10.1525/bio.2011.61.6.10.
12) Alexander, L. et al., 2020: Intercomparison of annual precipitation indices and extremes over global land areas from in situ, space-based and reanalysis products. Environmental Research Letters, 15(5), 055002, doi:10.1088/1748-9326/ab79e2.
13) Alkhayuon, H., P. Ashwin, L.C. Jackson, C. Quinn, and R.A. Wood, 2019: Basin bifurcations, oscillatory instability and rate-induced thresholds for Atlantic meridional overturning circulation in a global oceanic box model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2225), 20190051, doi:10.1098/rspa.2019.0051.
14) Allan, R. et al., 2011: The International Atmospheric Circulation Reconstructions over the Earth (ACRE) Initiative. Bulletin of the American Meteorological Society, 92(11), 1421–1425, doi:10.1175/2011bams3218.1.
15) Allan, R.P. et al., 2020: Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472(1), 49–75, doi:10.1111/nyas.14337.
16) Allen, M.R. and W.J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419(6903), 228–232, doi:10.1038/nature01092.
17) Allen, M.R. et al., 2009: Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature, 458(7242), 1163–1166, doi:10.1038/nature08019.
18) Allen, M.R. et al., 2016: New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nature Climate Change, 6(8), 773–776, doi:10.1038/nclimate2998.
19) Anagnostou, E. et al., 2020: Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nature Communications, 11(1), 4436, doi:10.1038/s41467-020-17887-x.
20) Anav, A. et al., 2013: Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models. Journal of Climate, 26(18), 6801–6843, doi:10.1175/jcli-d-12-00417.1.
21) Anchukaitis, K.J. et al., 2017: Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 163, 1–22, doi:10.1016/j. quascirev.2017.02.020.
22) Anderson, A.A. and H.E. Huntington, 2017: Social Media, Science, and Attack Discourse: How Twitter Discussions of Climate Change Use Sarcasm and Incivility. Science Communication, 39(5), 598–620, doi:10.1177/1075547017735113.
23) André, J.-C. et al., 2014: High-Performance Computing for Climate Modeling. Bulletin of the American Meteorological Society, 95(5), ES97–ES100, doi:10.1175/bams-d-13-00098.1.
24) Andrews, T., P.M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophysical Research Letters, 37(14), L14701, doi:10.1029/2010gl043991.
25) Angerer, B. et al., 2017: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6. Atmospheric Measurement Techniques, 10(12), 4845–4863, doi:10.5194/amt-10-4845-2017.
26) Ångström, A., 1929: On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geografiska Annaler, 11(2), 156–166, doi:10.1080/200 14422.1929.11880498.
27) Ångström, A., 1964: The parameters of atmospheric turbidity. Tellus, 16(1), 64–75, doi:10.3402/tellusa.v16i1.8885.
28) Ångström, K., 1900: Über die Bedeutung des Wasserdampfes und der Kohlensäure bei der Absorption der Erdatmosphäre. Annalen der Physik, 308(12), 720–732, doi:10.1002/andp.19003081208.
29) Annan, J.D. and J.C. Hargreaves, 2017: On the meaning of independence in climate science. Earth System Dynamics, 8(1), 211–224, doi:10.5194/ esd-8-211-2017.
30) Anterrieu, E., A. Khazaal, F. Cabot, and Y. Kerr, 2016: Geolocation of RFI sources with sub-kilometric accuracy from SMOS interferometric data. Remote Sensing of Environment, 180, 76–84, doi:10.1016/j.rse.2016.02.007.
31) Anthes, R.A., 2011: Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmospheric Measurement Techniques, 4(6), 1077–1103, doi:10.5194/amt-4-1077-2011.
32) Arnold, J.R. and W.F. Libby, 1949: Age determinations by radiocarbon content: Checks with samples of known age. Science, 110, 678–680, doi:10.1126/ science.110.2869.678.
33) Arora, V.K. et al., 2020: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17(16), 4173–4222, doi:10.5194/bg-17-4173-2020.
34) Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(251), 237–276, doi:10.1080/14786449608620846.
35) Arrhenius, S., 1908: Worlds in the Making: The Evolution of the Universe. Harper & Brothers Publishers, New York, NY, USA and London, UK, 230 pp.
36) Asay-Davis, X.S., N.C. Jourdain, and Y. Nakayama, 2017: Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet. Current Climate Change Reports, 3(4), 316329, doi:10.1007/s40641-017-0071-0.
37) Ashton, T.S., 1997: The Industrial Revolution 1760-1830. Oxford University Press, Oxford, UK, 162 pp.
38) Ashwin, P., S. Wieczorek, R. Vitolo, and P. Cox, 2012: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1962), 1166–1184, doi:10.1098/rsta.2011.0306.