Potential effect of atmospheric carbon dioxide on yield
Carbon dioxide is essential to plant growth. Rising CO2 concentration in the atmosphere can have both positive and negative consequences.
Increased CO2 is expected to have positive physiological effects by increasing the rate of photosynthesis. Currently, the amount of carbon dioxide in the atmosphere is 380 parts per million. In comparison, the amount of oxygen is 210,000 ppm. This means that often plants may be starved of carbon dioxide, being outnumbered by the photosynthetic pollutant oxygen. The effects of an increase in carbon dioxide would be higher on C3 crops (such as wheat) than on C4 crops (such as maize), because the former is more susceptible to carbon dioxide shortage. Under optimum conditions of temperature and humidity, the yield increase could reach 36%, if the levels of carbon dioxide are doubled.[citation needed]
Further, few studies have looked at the impact of elevated carbon dioxide concentrations on whole farming systems. Most models study the relationship between CO2 and productivity in isolation from other factors associated with climate change, such as an increased frequency of extreme weather events, seasonal shifts, and so on.
In 2005, the Royal Society in London concluded that the purported benefits of CO2 fertilization are “likely to be far lower than previously estimated” when factors such as increasing ground-level ozone are taken into account." [8]
[edit] Effect on quality
According to the IPCC's TAR, "The importance of climate change impacts on grain and forage quality emerges from new research. For rice, the amylose content of the grain--a major determinant of cooking quality--is increased under elevated CO2" (Conroy et al., 1994). Cooked rice grain from plants grown in high-CO2 environments would be firmer than that from today's plants. However, concentrations of iron and zinc, which are important for human nutrition, would be lower (Seneweera and Conroy, 1997). Moreover, the protein content of the grain decreases under combined increases of temperature and CO2 (Ziska et al., 1997)."[9]
Studies have shown that higher CO2 levels lead to reduced plant uptake of nitrogen (and a smaller number showing the same for trace elements such as zinc) resulting in crops with lower nutritional value.[10][11] This would primarily impact on populations in poorer countries less able to compensate by eating more food, more varied diets, or possibly taking supplements.
Reduced nitrogen content in grazing plants has also been shown to reduce animal productivity in sheep, which depend on microbes in their gut to digest plants, which in turn depend on nitrogen intake.[10]
Climate change and agriculture - Wikipedia, the free encyclopedia