Volcanic eruption linked with major historic global warming period
this likely little Ice Age coming, before you mentioned it to me. I kept reading about how warm periods like these only lead to--are precursors of--the colder ones. I got busy working and sometimes just wanted to play when I came in and so maybe you thought I wasn't listening but I was.
Point me to a link or two on Your perspective on Global Cooling. What I'm adding from this link to you below addresses your Volcanic eruption relationship with GW, but it's addressed near the end of this post.
I grabbed this link the other night that I wanted you to tell me your thoughts on...
William H. Calvin, "The Great Climate Flip-flop," THE ATLANTIC MONTHLY (January 1998)
Here's the stuff from it I wished you'd look at and get back to me on; take days if you need, weeks, it's ok.

I'm stuck on this project for a while now, so for a minute, I have all the time in the world.
So here, this's all the stuff I wondered what you thought of from the link:
"...I hope never to see a failure of the northernmost loop of the North Atlantic Current, because the result would be a population crash that would take much of civilization with it, all within a decade. Ways to postpone such a climatic shift are conceivable, however — old-fashioned dam-and-ditch construction in critical locations might even work. Although we can't do much about everyday weather, we may nonetheless be able to stabilize the climate enough to prevent an abrupt cooling..."
"...Sudden onset, sudden recovery — this is why I use the word "flip-flop" to describe these climate changes. They are utterly unlike the changes that one would expect from accumulating carbon dioxide or the setting adrift of ice shelves from Antarctica. Change arising from some sources, such as volcanic eruptions, can be abrupt — but it doesn't flip back just as quickly centuries later..."
"...Of this much we're sure: global climate flip-flops have frequently happened in the past, and they're likely to happen again. It's also clear that sufficient global warming could trigger an abrupt cooling in at least two ways — by increasing
high-latitude rainfall or by
melting Greenland's ice, both of which could put enough fresh water into the ocean surface to suppress
flushing..."--[You hearda this flushing?]
"...Though combating global warming is obviously on the agenda for preventing a cold flip, we could easily be blindsided by stability problems if we allow global warming per se to remain the main focus of our climate-change efforts. To stabilize our flip-flopping climate
we'll need to identify all the important feedbacks that control climate and ocean currents — evaporation, the reflection of sunlight back into space, and so on — and then estimate their relative strengths and interactions in computer models.."
"...
We are near the end of a warm period in any event;
ice ages return even without human influences on climate. The last warm period abruptly terminated 13,000 years after the abrupt warming that initiated it, and we've already gone 15,000 years from a similar starting point. But we may be able to do something to delay an abrupt cooling.
And then we come to this whole thing that scares the bejesus outta me:
"...
Three Scenarios
FUTURISTS have learned to bracket the future with alternative scenarios, each of which captures important features that cluster together, each of which is compact enough to be seen as a narrative on a human scale. Three scenarios for the next climatic phase might be called
population crash, cheap fix, and muddling through.
The
population-crash scenario is surely the most appalling. Plummeting crop yields will cause some powerful countries to try to take over their neighbors or distant lands — if only because their armies, unpaid and lacking food, will go marauding, both at home and across the borders. The better-organized countries will attempt to use their armies, before they fall apart entirely, to take over countries with significant remaining resources, driving out or starving their inhabitants if not using modern weapons to accomplish the same end: eliminating competitors for the remaining food.
This will be a worldwide problem — and could easily lead to a Third World War — but Europe's vulnerability is particularly easy to analyze. The last abrupt cooling, the Younger Dryas, drastically altered Europe's climate as far east as Ukraine. Present-day Europe has more than 650 million people. It has excellent soils, and largely grows its own food. It could no longer do so if it lost the extra warming from the North Atlantic.
There is another part of the world with the same good soil, within the same latitudinal band, which we can use for a quick comparison. Canada lacks Europe's winter warmth and rainfall, because it has no equivalent of the North Atlantic Current to preheat its eastbound weather systems. Canada's agriculture supports about 28 million people. If Europe had weather like Canada's, it could feed only one out of twenty-three present-day Europeans.
Any abrupt switch in climate would also disrupt food-supply routes. The only reason that two percent of our population can feed the other 98 percent is that we have a well-developed system of transportation and middlemen — but it is not very robust. The system allows for large urban populations in the best of times, but not in the case of widespread disruptions.
Natural disasters such as hurricanes and earthquakes are less troubling than abrupt coolings for two reasons: they're short (the recovery period starts the next day) and they're local or regional (unaffected citizens can help the overwhelmed). There is, increasingly, international cooperation in response to catastrophe — but no country is going to be able to rely on a stored agricultural surplus for even a year, and any country will be reluctant to give away part of its surplus.
In an abrupt cooling the problem would get worse for decades, and much of the earth would be affected. A meteor strike that killed most of the population in a month would not be as serious as an abrupt cooling that eventually killed just as many. With the population crash spread out over a decade, there would be ample opportunity for civilization's institutions to be torn apart and for hatreds to build, as armies tried to grab remaining resources simply to feed the people in their own countries. The effects of an abrupt cold last for centuries. They might not be the end of Homo sapiens — written knowledge and elementary education might well endure — but the world after such a population crash would certainly be full of despotic governments that hated their neighbors because of recent atrocities. Recovery would be very slow.
A slightly exaggerated version of our present know-something-do-nothing state of affairs is know-nothing-do-nothing: a reduction in science-as-usual, further limiting our chances of discovering a way out. History is full of withdrawals from knowledge-seeking, whether for reasons of fundamentalism, fatalism, or "government lite" economics. This scenario does not require that the shortsighted be in charge, only that they have enough influence to put the relevant science agencies on starvation budgets and to send recommendations back for yet another commission report due five years hence.
A
cheap-fix scenario, such as building or bombing a dam, presumes that we know enough to prevent trouble, or to nip a developing problem in the bud. But just as vaccines and antibiotics presume much knowledge about diseases, their climatic equivalents presume much knowledge about oceans, atmospheres, and past climates. Suppose we had reports that winter salt flushing was confined to certain areas, that abrupt shifts in the past were associated with localized flushing failures, and that one computer model after another suggested a solution that was likely to work even under a wide range of weather extremes. A quick fix, such as bombing ice dams, might then be possible. Although I don't consider this scenario to be the most likely one, it is possible that solutions could turn out to be cheap and easy, and that another abrupt cooling isn't inevitable. Fatalism, in other words, might well be foolish.
A
muddle-through scenario assumes, again, that we would mobilize our scientific and technological resources well in advance of any abrupt cooling problem, but that the solution wouldn't be simple. Instead we would try one thing after another, creating a patchwork of solutions that might hold for another few decades, allowing the search for a better stabilizing mechanism to continue.
We might, for example, anchor bargeloads of evaporation-enhancing surfactants (used in the southwest corner of the Dead Sea to speed potash production) upwind from critical downwelling sites, letting winds spread them over the ocean surface all winter, just to ensure later flushing. We might create a rain shadow, seeding clouds so that they dropped their unsalted water well upwind of a given year's critical flushing sites — a strategy that might be particularly important in view of the increased rainfall expected from global warming. We might undertake to regulate the Mediterranean's salty outflow, which is also thought to disrupt the North Atlantic Current.
Perhaps computer simulations will tell us that the only robust solutions are those that re-create the ocean currents of three million years ago, before the Isthmus of Panama closed off the express route for excess-salt disposal. Thus we might dig a wide sea-level Panama Canal in stages, carefully managing the changeover..."
And then:
"...STABILIZING our flip-flopping climate is not a simple matter.
We need heat in the right places, such as the Greenland Sea, and not in others right next door, such as Greenland itself. Man-made global warming is likely to achieve exactly the opposite — warming Greenland and cooling the Greenland Sea.
Volcanos spew sulfates, as do our own smokestacks, and these reflect some sunlight back into space, particularly over the North Atlantic and Europe. But we can't assume that anything like this will counteract our longer-term flurry of carbon-dioxide emissions..."
And lastly:
"...We cannot avoid trouble by merely cutting down on our present warming trend, though that's an excellent place to start. Paleoclimatic records reveal that any notion we may once have had that the climate will remain the same unless pollution changes it is wishful thinking.
Judging from the duration of the last warm period, we are probably near the end of the current one. Our goal must be to stabilize the climate in its favorable mode and ensure that enough equatorial heat continues to flow into the waters around Greenland and Norway. The stabilized climate must have a wide "comfort zone," and be able to survive the El Niños of the short term. We can design for that in computer models of climate, just as architects design earthquake-resistant sky scrapers. Implementing it might cost no more, in relative terms, than building a medieval cathedral.
But we may not have centuries for acquiring wisdom, and it would be wise to compress our learning into the years immediately ahead. We have to discover what has made the climate of the past 8,000 years relatively stable, and then figure out how to prop it up."
~Sorry it took me so long to get back to it.