COVID - SARS-CoV-2 - Treatment or Cure ???

Stryder50

Platinum Member
Feb 8, 2021
6,648
3,983
938
Lynden, WA, USA
I know, no shortage of threads already dealing with "Covid"~Etc.; still ...
... Just came across this article and think it deserves a thread of its' own, so;

How Will the COVID Pills Change the Pandemic?​

New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time.
...
EXCERPT:
...
In March, 2020, researchers at Emory University published a paper about a molecule called NHC/EIDD-2801. At the time, there were no treatments available for the coronavirus. But NHC/EIDD-2801, the researchers wrote, possessed “potency against multiple coronaviruses,” and could become “an effective antiviral against SARS-CoV-2.” A few days later, Emory licensed the molecule to Ridgeback Biotherapeutics, a Miami-based biotechnology company which had previously developed a monoclonal antibody for Ebola. Ridgeback partnered with the pharmaceutical giant Merck to accelerate its development.

The Emory researchers named their drug molnupiravir, after Mjölnir—the hammer of Thor. It turns out that this was not hyperbole. Last month, Merck and Ridgeback announced that molnupiravir could reduce by half the chances that a person infected by the coronavirus would need to be hospitalized. The drug was so overwhelmingly effective that an independent committee asked the researchers to stop their Phase III trial early—it would have been unethical to continue giving participants placebos. None of the nearly four hundred patients who received molnupiravir in the trial went on to die, and the drug had no major side effects. On November 4th, the U.K. became the first country to approve molnupiravir; many observers expect that an emergency-use authorization will come from the U.S. Food and Drug Administration in December.

Oral antivirals like molnupiravir could transform the treatment of COVID-19, and of the pandemic more generally. Currently, treatments aimed at fighting COVID—mainly monoclonal antibodies and antiviral drugs like remdesivir—are given through infusion or injection, usually in clinics or hospitals. By the time people manage to arrange a visit, they are often too sick to receive much benefit. Molnupiravir, however, is a little orange pill. A person might wake up, feel unwell, get a rapid COVID test, and head to the pharmacy around the corner to pick up a pack. A full course, which needs to start within five days of the appearance of symptoms, consists of forty pills—four capsules taken twice a day, for five days. Merck is now testing whether molnupiravir can prevent not just hospitalization after infection but also infection after exposure. If that’s the case, then the drug might be taken prophylactically—you could get a prescription when someone in your household tests positive, even if you haven’t.

Molnupiravir is—and is likely to remain—effective against all the major coronavirus variants. In fact, at least in the lab, it works against any number of RNA viruses besides SARS-CoV-2, including Ebola, hepatitis C, R.S.V., and norovirus. Instead of targeting the coronavirus’s spike protein, as vaccine-generated antibodies do, molnupiravir attacks the virus’s basic replication machinery. The spike protein mutates over time, but the replication machinery is mostly set in stone, and compromising that would make it hard for the virus to evolve resistance. Once it’s inside the body, molnupiravir breaks down into a molecule called NHC. As my colleague Matthew Hutson explained, in a piece about antiviral drugs published last year, NHC is similar to cytosine, one of the four “bases” from which viral RNA is constructed; when the coronavirus’s RNA begins to copy itself, it slips into cytosine’s spot, in a kind of “Freaky Friday” swap. The molecule evades the virus’s genetic proofreading mechanisms and wreaks havoc, pairing with other bases, introducing a bevy of errors, and ultimately crashing the system.

A drug that’s so good at messing with viral RNA has led some to ask whether it messes with human DNA, too. (Merck’s trial excluded pregnant and breast-feeding women, and women of childbearing age had to be on contraceptives.) This is a long-standing concern about antiviral drugs that introduce genomic errors. A recent study suggests that molnupiravir, taken at high doses and for extended periods, can, in fact, introduce mutations into DNA. But, as the biochemist Derek Lowe noted, in a blog post for Science, these findings probably don’t apply directly to the real-world use of molnupiravir in COVID patients. The study was conducted in cells, not live animals or humans. The cells were exposed to the drug for more than a month; even at the highest doses, it caused fewer mutations than were created by a brief exposure to ultraviolet light. Meanwhile, Merck has run a battery of tests—both in the lab and in animal models—and found no evidence that molnupiravir causes problematic mutations at the dose and duration at which it will be prescribed.
...
 
If there is a vaccine, why would anyone need pills? You don't take small pox or pollio pills, not even shorter lasting treatments like Tetanus. Anyone believing the mRNA treatments are anything but treatments is fooling themselves. Big pharma makes very little on a cure, they make a fortune on 300 million customers for life.
 
If there is a vaccine, why would anyone need pills? You don't take small pox or pollio pills, not even shorter lasting treatments like Tetanus. Anyone believing the mRNA treatments are anything but treatments is fooling themselves. Big pharma makes very little on a cure, they make a fortune on 300 million customers for life.
Your answers are in the article (and partially in the excerpts).
Reading the full article text would help, assuming you can understand it.
 
Your answers are in the article (and partially in the excerpts).
Reading the full article text would help, assuming you can understand it.
Understanding it is easy, believing it is something else altogether. It's quite a racket big pharma has going. 300 million people needing boosters once or more a year and pill sales on top of it. All that for a virus with a 99+% survivability with or without the experimental mRNA treatment.
 
I know, no shortage of threads already dealing with "Covid"~Etc.; still ...
... Just came across this article and think it deserves a thread of its' own, so;

How Will the COVID Pills Change the Pandemic?​

New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time.
...
EXCERPT:
...
In March, 2020, researchers at Emory University published a paper about a molecule called NHC/EIDD-2801. At the time, there were no treatments available for the coronavirus. But NHC/EIDD-2801, the researchers wrote, possessed “potency against multiple coronaviruses,” and could become “an effective antiviral against SARS-CoV-2.” A few days later, Emory licensed the molecule to Ridgeback Biotherapeutics, a Miami-based biotechnology company which had previously developed a monoclonal antibody for Ebola. Ridgeback partnered with the pharmaceutical giant Merck to accelerate its development.

The Emory researchers named their drug molnupiravir, after Mjölnir—the hammer of Thor. It turns out that this was not hyperbole. Last month, Merck and Ridgeback announced that molnupiravir could reduce by half the chances that a person infected by the coronavirus would need to be hospitalized. The drug was so overwhelmingly effective that an independent committee asked the researchers to stop their Phase III trial early—it would have been unethical to continue giving participants placebos. None of the nearly four hundred patients who received molnupiravir in the trial went on to die, and the drug had no major side effects. On November 4th, the U.K. became the first country to approve molnupiravir; many observers expect that an emergency-use authorization will come from the U.S. Food and Drug Administration in December.

Oral antivirals like molnupiravir could transform the treatment of COVID-19, and of the pandemic more generally. Currently, treatments aimed at fighting COVID—mainly monoclonal antibodies and antiviral drugs like remdesivir—are given through infusion or injection, usually in clinics or hospitals. By the time people manage to arrange a visit, they are often too sick to receive much benefit. Molnupiravir, however, is a little orange pill. A person might wake up, feel unwell, get a rapid COVID test, and head to the pharmacy around the corner to pick up a pack. A full course, which needs to start within five days of the appearance of symptoms, consists of forty pills—four capsules taken twice a day, for five days. Merck is now testing whether molnupiravir can prevent not just hospitalization after infection but also infection after exposure. If that’s the case, then the drug might be taken prophylactically—you could get a prescription when someone in your household tests positive, even if you haven’t.

Molnupiravir is—and is likely to remain—effective against all the major coronavirus variants. In fact, at least in the lab, it works against any number of RNA viruses besides SARS-CoV-2, including Ebola, hepatitis C, R.S.V., and norovirus. Instead of targeting the coronavirus’s spike protein, as vaccine-generated antibodies do, molnupiravir attacks the virus’s basic replication machinery. The spike protein mutates over time, but the replication machinery is mostly set in stone, and compromising that would make it hard for the virus to evolve resistance. Once it’s inside the body, molnupiravir breaks down into a molecule called NHC. As my colleague Matthew Hutson explained, in a piece about antiviral drugs published last year, NHC is similar to cytosine, one of the four “bases” from which viral RNA is constructed; when the coronavirus’s RNA begins to copy itself, it slips into cytosine’s spot, in a kind of “Freaky Friday” swap. The molecule evades the virus’s genetic proofreading mechanisms and wreaks havoc, pairing with other bases, introducing a bevy of errors, and ultimately crashing the system.

A drug that’s so good at messing with viral RNA has led some to ask whether it messes with human DNA, too. (Merck’s trial excluded pregnant and breast-feeding women, and women of childbearing age had to be on contraceptives.) This is a long-standing concern about antiviral drugs that introduce genomic errors. A recent study suggests that molnupiravir, taken at high doses and for extended periods, can, in fact, introduce mutations into DNA. But, as the biochemist Derek Lowe noted, in a blog post for Science, these findings probably don’t apply directly to the real-world use of molnupiravir in COVID patients. The study was conducted in cells, not live animals or humans. The cells were exposed to the drug for more than a month; even at the highest doses, it caused fewer mutations than were created by a brief exposure to ultraviolet light. Meanwhile, Merck has run a battery of tests—both in the lab and in animal models—and found no evidence that molnupiravir causes problematic mutations at the dose and duration at which it will be prescribed.
...
This is actually a game changer and will begin to show the left's true colors if this is available and yet people are still mandated to get vaccines or fired from their jobs for not being vaccinated and having mask mandates.
 
This is actually a game changer and will begin to show the left's true colors if this is available and yet people are still mandated to get vaccines or fired from their jobs for not being vaccinated and having mask mandates.
EXACTLY!

Makes one wonder why some would object to this or think it un-neccessay, unless they want to perpetuate the panic-demic and hyped crisis of Covid, which is 99+% not a fatal disease. ???

A reminder, wife and I "caught" Covid back just after Easter ~ I've had worse annual flu in past years. BTW, I suspect reason "the flu" numbers were so low in recent year is because anyone whom caught the flu, likely also had Covid, so blame placed there. Consider how we haven't tested people for "the flu" the way we test for Covid, so the data is garbled and massaged towards Covid. Same as co-morbidity are also swept under the rug as a factor in hospitalizations and deaths.

The "Covid Crisis" is far more political than medical. :mad: :icon_rolleyes:😒
 
EXACTLY!

Makes one wonder why some would object to this or think it un-neccessay, unless they want to perpetuate the panic-demic and hyped crisis of Covid, which is 99+% not a fatal disease. ???

A reminder, wife and I "caught" Covid back just after Easter ~ I've had worse annual flu in past years. BTW, I suspect reason "the flu" numbers were so low in recent year is because anyone whom caught the flu, likely also had Covid, so blame placed there. Consider how we haven't tested people for "the flu" the way we test for Covid, so the data is garbled and massaged towards Covid. Same as co-morbidity are also swept under the rug as a factor in hospitalizations and deaths.

The "Covid Crisis" is far more political than medical. :mad: :icon_rolleyes:😒
Yes, and when it comes to vaccinations, you are required, coerced, or intimidated to get one. And, when it doesn't work, it isn't because the vaccination didn't work, it is because you needed a booster shot.
 
If there is a vaccine, why would anyone need pills? You don't take small pox or pollio pills, not even shorter lasting treatments like Tetanus. Anyone believing the mRNA treatments are anything but treatments is fooling themselves. Big pharma makes very little on a cure, they make a fortune on 300 million customers for life.
Because some do not define forced cellular mRNA production of Chinese communist virus parts as a vaccine.
 
I know, no shortage of threads already dealing with "Covid"~Etc.; still ...
... Just came across this article and think it deserves a thread of its' own, so;

How Will the COVID Pills Change the Pandemic?​

New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time.
...
EXCERPT:
...
In March, 2020, researchers at Emory University published a paper about a molecule called NHC/EIDD-2801. At the time, there were no treatments available for the coronavirus. But NHC/EIDD-2801, the researchers wrote, possessed “potency against multiple coronaviruses,” and could become “an effective antiviral against SARS-CoV-2.” A few days later, Emory licensed the molecule to Ridgeback Biotherapeutics, a Miami-based biotechnology company which had previously developed a monoclonal antibody for Ebola. Ridgeback partnered with the pharmaceutical giant Merck to accelerate its development.

The Emory researchers named their drug molnupiravir, after Mjölnir—the hammer of Thor. It turns out that this was not hyperbole. Last month, Merck and Ridgeback announced that molnupiravir could reduce by half the chances that a person infected by the coronavirus would need to be hospitalized. The drug was so overwhelmingly effective that an independent committee asked the researchers to stop their Phase III trial early—it would have been unethical to continue giving participants placebos. None of the nearly four hundred patients who received molnupiravir in the trial went on to die, and the drug had no major side effects. On November 4th, the U.K. became the first country to approve molnupiravir; many observers expect that an emergency-use authorization will come from the U.S. Food and Drug Administration in December.

Oral antivirals like molnupiravir could transform the treatment of COVID-19, and of the pandemic more generally. Currently, treatments aimed at fighting COVID—mainly monoclonal antibodies and antiviral drugs like remdesivir—are given through infusion or injection, usually in clinics or hospitals. By the time people manage to arrange a visit, they are often too sick to receive much benefit. Molnupiravir, however, is a little orange pill. A person might wake up, feel unwell, get a rapid COVID test, and head to the pharmacy around the corner to pick up a pack. A full course, which needs to start within five days of the appearance of symptoms, consists of forty pills—four capsules taken twice a day, for five days. Merck is now testing whether molnupiravir can prevent not just hospitalization after infection but also infection after exposure. If that’s the case, then the drug might be taken prophylactically—you could get a prescription when someone in your household tests positive, even if you haven’t.

Molnupiravir is—and is likely to remain—effective against all the major coronavirus variants. In fact, at least in the lab, it works against any number of RNA viruses besides SARS-CoV-2, including Ebola, hepatitis C, R.S.V., and norovirus. Instead of targeting the coronavirus’s spike protein, as vaccine-generated antibodies do, molnupiravir attacks the virus’s basic replication machinery. The spike protein mutates over time, but the replication machinery is mostly set in stone, and compromising that would make it hard for the virus to evolve resistance. Once it’s inside the body, molnupiravir breaks down into a molecule called NHC. As my colleague Matthew Hutson explained, in a piece about antiviral drugs published last year, NHC is similar to cytosine, one of the four “bases” from which viral RNA is constructed; when the coronavirus’s RNA begins to copy itself, it slips into cytosine’s spot, in a kind of “Freaky Friday” swap. The molecule evades the virus’s genetic proofreading mechanisms and wreaks havoc, pairing with other bases, introducing a bevy of errors, and ultimately crashing the system.

A drug that’s so good at messing with viral RNA has led some to ask whether it messes with human DNA, too. (Merck’s trial excluded pregnant and breast-feeding women, and women of childbearing age had to be on contraceptives.) This is a long-standing concern about antiviral drugs that introduce genomic errors. A recent study suggests that molnupiravir, taken at high doses and for extended periods, can, in fact, introduce mutations into DNA. But, as the biochemist Derek Lowe noted, in a blog post for Science, these findings probably don’t apply directly to the real-world use of molnupiravir in COVID patients. The study was conducted in cells, not live animals or humans. The cells were exposed to the drug for more than a month; even at the highest doses, it caused fewer mutations than were created by a brief exposure to ultraviolet light. Meanwhile, Merck has run a battery of tests—both in the lab and in animal models—and found no evidence that molnupiravir causes problematic mutations at the dose and duration at which it will be prescribed.
...
This pill started out as mutatgenesis experiments on E. coli in Siberia. The breast-feeding mentioned above links to increased risk for breast-cancer by mutations occurring at position 20 of the spike protein of. SARS-CoV-2. This can happen during infection, apart from any influences from vaccines or pills.
 
I know, no shortage of threads already dealing with "Covid"~Etc.; still ...
... Just came across this article and think it deserves a thread of its' own, so;

How Will the COVID Pills Change the Pandemic?​

New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time.
...
EXCERPT:
...
In March, 2020, researchers at Emory University published a paper about a molecule called NHC/EIDD-2801. At the time, there were no treatments available for the coronavirus. But NHC/EIDD-2801, the researchers wrote, possessed “potency against multiple coronaviruses,” and could become “an effective antiviral against SARS-CoV-2.” A few days later, Emory licensed the molecule to Ridgeback Biotherapeutics, a Miami-based biotechnology company which had previously developed a monoclonal antibody for Ebola. Ridgeback partnered with the pharmaceutical giant Merck to accelerate its development.

The Emory researchers named their drug molnupiravir, after Mjölnir—the hammer of Thor. It turns out that this was not hyperbole. Last month, Merck and Ridgeback announced that molnupiravir could reduce by half the chances that a person infected by the coronavirus would need to be hospitalized. The drug was so overwhelmingly effective that an independent committee asked the researchers to stop their Phase III trial early—it would have been unethical to continue giving participants placebos. None of the nearly four hundred patients who received molnupiravir in the trial went on to die, and the drug had no major side effects. On November 4th, the U.K. became the first country to approve molnupiravir; many observers expect that an emergency-use authorization will come from the U.S. Food and Drug Administration in December.

Oral antivirals like molnupiravir could transform the treatment of COVID-19, and of the pandemic more generally. Currently, treatments aimed at fighting COVID—mainly monoclonal antibodies and antiviral drugs like remdesivir—are given through infusion or injection, usually in clinics or hospitals. By the time people manage to arrange a visit, they are often too sick to receive much benefit. Molnupiravir, however, is a little orange pill. A person might wake up, feel unwell, get a rapid COVID test, and head to the pharmacy around the corner to pick up a pack. A full course, which needs to start within five days of the appearance of symptoms, consists of forty pills—four capsules taken twice a day, for five days. Merck is now testing whether molnupiravir can prevent not just hospitalization after infection but also infection after exposure. If that’s the case, then the drug might be taken prophylactically—you could get a prescription when someone in your household tests positive, even if you haven’t.

Molnupiravir is—and is likely to remain—effective against all the major coronavirus variants. In fact, at least in the lab, it works against any number of RNA viruses besides SARS-CoV-2, including Ebola, hepatitis C, R.S.V., and norovirus. Instead of targeting the coronavirus’s spike protein, as vaccine-generated antibodies do, molnupiravir attacks the virus’s basic replication machinery. The spike protein mutates over time, but the replication machinery is mostly set in stone, and compromising that would make it hard for the virus to evolve resistance. Once it’s inside the body, molnupiravir breaks down into a molecule called NHC. As my colleague Matthew Hutson explained, in a piece about antiviral drugs published last year, NHC is similar to cytosine, one of the four “bases” from which viral RNA is constructed; when the coronavirus’s RNA begins to copy itself, it slips into cytosine’s spot, in a kind of “Freaky Friday” swap. The molecule evades the virus’s genetic proofreading mechanisms and wreaks havoc, pairing with other bases, introducing a bevy of errors, and ultimately crashing the system.

A drug that’s so good at messing with viral RNA has led some to ask whether it messes with human DNA, too. (Merck’s trial excluded pregnant and breast-feeding women, and women of childbearing age had to be on contraceptives.) This is a long-standing concern about antiviral drugs that introduce genomic errors. A recent study suggests that molnupiravir, taken at high doses and for extended periods, can, in fact, introduce mutations into DNA. But, as the biochemist Derek Lowe noted, in a blog post for Science, these findings probably don’t apply directly to the real-world use of molnupiravir in COVID patients. The study was conducted in cells, not live animals or humans. The cells were exposed to the drug for more than a month; even at the highest doses, it caused fewer mutations than were created by a brief exposure to ultraviolet light. Meanwhile, Merck has run a battery of tests—both in the lab and in animal models—and found no evidence that molnupiravir causes problematic mutations at the dose and duration at which it will be prescribed.
...
Yes ...
It is effective at somewhere around 60-80% effective.

It is a mutagenic small molecule therapy... meaning that high doses for extended periods of time will give you cancer or some other horrible side effect.

It's not perfect but it is effective for most people.

Pfizer's antiviral Paxlovid does seem to be a bit more effective...but it's supply chain is extremely long. So supplies are going to be limited for an extended period of time.

Antivirals are the second line of defense against COVID...not a primary. But a needed part of the matrix for making this virus endemic instead of pandemic.
 

Forum List

Back
Top