The Future of Transportation - Part 1

RollingThunder

Gold Member
Mar 22, 2010
4,818
522
155
There is an enormous amount of misinformation going around about clean energy, renewables, non-polluting fuels, etc.. This may be part of a propaganda campaign that the fossil fuel industry has mounted to protect their market dominance and profits. In any case, solar, wind, ocean and other alternatives gets routinely attacked with bogus, spun-up, twisted pseudo-science and lies. One of the myths that gets pushed is that there are no viable alternatives to petroleum that have a sufficiently high energy density for their use in transportation, particularly in aviation. Of course, that is nonsense right off the top, because high-energy-density non-petro bio-fuels have already been developed and tested and will be coming into increasing use in just the next few years. Additionally, liquid hydrogen has an energy density as high as petroleum based fuels, so high, in fact, that it has even been used as a rocket fuel.

The Future of Aviation Biofuels
20 February 2012
(excerpt)
In New York, Bloomberg New Energy Finance said that jatropha-based fuels were the near-term candidate as sustainable aviation fuels available at prices competitive with conventional jet fuel. The BNEF research unit said that it expected jatropha-based jet fuel to be available at $0.86-a-litre ($3.25 per gallon) by 2018. Following the emergence of jatropha-based fuels, BNEF said that aviation fuel made from pyrolysis of woody biomass represented the next most affordable category of aviation biofuels, projecting that jet fuel from this source could be available at $0.90 per litre ($3.40 per gallon) by 2018.

Pure regular alcohol bio-fuel has an energy density a bit lower than gasoline but it is still quite useful for most transportation purposes. Some of the other aliphatic alcohols (methanol, ethanol, propanol, and butanol) that can be produced biologically have both energy densities similar to gasoline and over 25% higher octane ratings.

Biofuels, while technically carbon neutral, still emit CO2 and have other complications associated with them and their production so, other than as an example of an already existing high-energy-density fuel for transportation, let's leave biofuels aside for a later debate and consider some of the other viable high density non-petroleum energy sources for transportation that will almost certainly come to dominate the transport sector in the next decade or so and should eventually replace petroleum fuels altogether.

There are several main viable prospects for powering both surface vehicles and aircraft without the use of fossil fuels of any kind (or any other kind of CO2 emitting fuel, for that matter, even bio-fuels).

Two of the main categories would be electric energy storage and hydrogen storage. Both of these are still in their initial, fast developing stages, with new advances eclipsing earlier developments regularly.

Let's first consider the actual cutting edge of electric energy storage methods. There are two main avenues of research - battery storage and supercapacitors. Some of these advances have been recently developed and are already moving from the 'research and development; stage into the initial, preliminary 'development for production' stages. I’ll get to those after first looking at one new and radical development in battery technology that is already in production and that has already proven itself in limited use.

Objections to electric storage for vehicular travel have generally centered on the cost of the batteries, the weight of the batteries, the length of time to recharge the batteries, and, perhaps primarily, the limited amount of energy that the current generation of production battery technology can pack into a battery of reasonable size and weight. That inability of the current batteries to power a car for much more than a hundred miles or so has been, in addition to the first generation high prices, the main sticking point for consumers.

An enormous amount of research has been directed at overcoming these limitations and great strides have been made along a number of different lines of research, some very recently. Here's a sampling of some of those developments that will, in the fairly near future, dramatically extent the range of electric vehicles, reduce the charge time of the batteries enormously, and significantly reduce the size, cost and weight of the batteries.

First let’s look at a radical new technology just coming on the market that may change the electrical vehicle market much faster than anyone anticipated.

This Breakthrough Will Soon Slash EV Prices Drastically
Wall Street Daily
Justin Fritz
Published Tue, Aug 30th, 2011
(excerpts)
The “Holy Grail” Of Cutting EV Costs
You see, the biggest culprit behind inflated EV prices is the battery. It adds $10,000 or so to an EVs manufacturers suggested retail price (MSRP). What’s worse, owners need to replace the lithium-ion battery every 10 years. So the cost of ownership is a huge deterrent. But DBM Energy’s new advanced battery – Kolibri – is constructed with a special lithium metal polymer. Early reports suggest this battery will cost 89% less than existing batteries and will only need to be replaced approximately every 20 years. Plus, it trounces existing batteries in three other important ways…
~ Weight: A Kolibri is reportedly 29% lighter than the battery pack in a Tesla Roadster.
~ Efficiency: A Kolibri has enough power to keep an Audi (ETR: NSU) A2 cruising for an astonishing 400 miles on a single charge.
~ Charging: You can fully charge a Kolibri battery in just six minutes. The Leaf takes closer to six hours.​
The potential for this new technology seems very promising and the company’s already in talks with major automakers worldwide. It foresees a mainstream rollout of its superior Kolibri battery not too far off. Once this happens, it’s reasonable to assume that you’ll be able to buy a Nissan LEAF for around $26,300. Or $18,800 after factoring in the government tax credit.



DBM Energy's KOLIBRI technology passes safety and performance tests with flying colors
DBM Energy's KOLIBRI Press Release - Free to Reprint

- LMP lithium-metal-polymer battery cells (KOLIBRI) pass comprehensive safety tests

- Independent range test confirms performance and range of KOLIBRI batteries

- Full-scale field trial scheduled for 2011


Berlin, Germany – 1. April 2011 – For over a year the KOLIBRI battery cells developed by DBM Energy have been performing reliably in electrically powered logistics vehicles. In October 2010, as part of a demonstration project, this innovative battery technology powered a conventional passenger car converted to electrical power over a distance exceeding 600 km, setting a worldwide record. 5,000 charging cycles document the range and longevity of the KOLIBRI LMP lithium-metal-polymer battery technology. Independent studies now also confirm the safety and performance of the KOLIBRI technology.

Safety
On 17 January 2011, the German Federal Institute for Materials Research and Testing (BAM - Bundesanstalt für Materialforschung und –prüfung) initiated a comprehensive test program to evaluate the safety aspects of the innovative LMP lithium-metal-polymer battery technology (KOLIBRI) developed by DBM Energy GmbH. The recently completed tests on individual battery cells confirm that the KOLIBRI technology used on the world record-setting drive on 26 October 2010 meets the required safety standards for use in stationary applications as well as in passenger and commercial vehicles.

The safety tests were conducted in accordance with the protocols established in the 5th edition of the UN Transport Test Manual for the Transport of Dangerous Goods published in 2009. The recommended testing methods for lithium batteries serve as an international standard. In eight exhaustive tests series, the KOLIBRI technology was examined to establish its safety when subjected to extreme climate and pressure variations, electrical short-circuiting, overload or inversed polarity as well as strong mechanical forces such as vibrations, show and heavy impact.DMB's LMP cells easily passed the entire range of tests.

"The LMP cells we tested stand out by their high degree of technical safety," said Prof. Schröder in explaining the results of the tests, which had been repeated a number of times. The LMP lithium-metal-polymer battery systems met all the standards set in the UN test series. The cells exhibited no leaks, did not generate heat exceeding 170 degrees Celsius, did not decompose or ignite, and maintained in excess of 90% of electrical tension.

In addition to the UN tests, the battery cells were also tested for fire risks. The LMP cells proved absolutely fire and explosion proof when exposed to direct fire. The BAM's Prof. Schröder concludes: "Overall it can be stated that the KOLIBRI cells completely fulfill all safety requirements for this type of technology."


Performance
Besides BAM's safety tests, the KOLIBRI technology was subjected to an independent range test by German certification institute DEKRA at its test center at the Lausitz EuroSpeedway racetrack in Klettwitz, Germany. The range of the LMP battery system on the Audi A2 test vehicle platform was determined following the procedures set down in the currently applicable ECE-R 101 directive for measuring the range of vehicles equipped with an electric drive. The tests were conducted in facilities and with equipment that fully complied with testing protocol requirements.

At the time of determining testing parameters prior to commencing the test, the vehicle weight – empty weight not including driver – was measured below the approved total mass of 1,500 kilograms. The maximum energy delivered by the LMP battery was measured at 62.928 kWh. By comparison, the battery capacity registered at the time of the world record in October 2010 was 98 kWh. The lower capacity, however, proved sufficient for the range tests as per ECE-R 101, which require that a distance of at least 300 km be covered.

All test results of the KOLIBRI technology were subsequently verified and validated by DEKRA. This includes the initial battery charge after handing over the vehicle, recharging the battery over charging period of 12 hours, discharging the battery over a distance of 100 km at a constant speed of 70 km/h as well as determining the vehicle's driving resistance. The peak speed measurement during the 30-minute maximum speed segment was 100 km/h. The required condition of covering a distance of 300 km within 7 days was met in one session on a roller dynamometer, indicating a range of 454.83 kilometers with the 62,928 kWh LMP battery. Adjusted for the battery capacity of 98 kWh at the time of the worldwide range record, the range would have been 714 km. The efficiency of the LMP battery was determined to be at 97%.

dbm-energy-a2-testing-630.jpg

The test vehicle equipped with the KOLIBRI battery technology will be on
display on the BMWi (Federal Ministry of Economics and Technology)
stand in Hall 2 at the Hannover Messe Industrie trade fair and expo from 4
to 8 April 2011.


About DBM Energy
DBM Energy GmbH , founded in 2009 and based in Berlin, Germany, manufactures high-performance energy storage systems. DBM Energy has developed an innovative battery technology: KOLIBRI. This lithium-based intelligent energy storage system is monitored, controlled and optimized via integrated controllers to ensure optimum efficiency. The KOLIBRI technology finds universal application as an energy storage system for stationary equipment, electric passenger vehicles and commercial vehicles in the logistics and manufacturing industries. As part of a demonstration project, an everyday vehicle modified for electric power and equipped with the KOLIBRI technology covered a distance exceeding 600 km with a single charge in October 2010, setting a worldwide record.




Converted Audi A2 claims new electric vehicle distance record: 372 miles
Oct 27th 2010
(excerpts)
Berlin energy supplier Lekker Energie and battery company DBM Energy have teamed up to electrify an Audi A2 and take it on an attention-getting 605 km (379.9 mile) journey from Munich to Berlin, Germany. The run, conducted at night, was such a success that the team is claiming an electric vehicle world record of sorts. While the Japan EV Club managed to squeeze 1,003 km (623 miles) from their Mira on a track driving a steady 40km/h (25 miles per hour), this latest feat was performed on public roads at an average speed of 55 miles per hour. The Germans even had 18 percent of the pack's 115 kWh left at the end.

While the length and speed of the trip are all very nice, the real story here seems to be the batteries that made it possible. Developed sans government investment, the lithium metal polymer (LMP) cells, which Lekker and DBM refer to as Kolibri AlphaPolymer Technology, are said to be lighter and more powerful than traditional cells and operate with an efficiency of 97 percent. They were also compact enough to be integrated into the car without giving up passenger seating or trunk space. Want more amazing? Apparently, when connected to a generous enough power supply, the batteries can recharge in just six minutes. Also, when asked when production could start, DBM Energy CEO Mirko Hannemann answered, "now." Does it all just sound too good to be true? Maybe, but we expect we'll get more information – and confirmation from other sources one way or the other – real soon.



(In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.)
 
Last edited:
If they can mass manufacture this battery, and it does all that they state, then this would put the EV on solid footing. Looking at the size of that battery pack, I could fit about a dozen of them under my van. Add hub motors on the back wheels, and you have a long range vehicle for which you could provide the fuel yourself.

DBM Energy's record-breaking KOLIBRI battery passes government tests [w/VIDEO]

When DBM Energy made its record-breaking drive from Munich to Berlin, Germany on a single charge of the KOLIBRI Alpha Polymer battery, there was a lot of skepticism expressed. Even more so when the technology platform, an Audi A2 conversion, was lost to a mysterious fire. Undaunted, the company has moved forward and submitted cells for testing by the German Federal Institute for Materials Research and Testing (BAM). It has also had the German certification organization DEKRA conduct a range test on the latest converted Audi A2.

The results? The cells stood up to BAM's physical tests – which included burning, high altitude simulation, short circuits and other distresses – quite well. We're talking gold star, A+, definite pass. The range tests results however were not quite as revealing. The pack size in this vehicle was 62.928 kWh (as opposed to the 98 kWhs of the original) and following the ECE-R 101 guidelines was found to be capable of running the A2 on the rollers for 454.83 km (282.62 miles). Extrapolating, they found that if the battery was the original was installed, they would have achieved 714 km (443.7 miles) Not bad, right?
 
Yanno..........the last time gas prices hit above 4.00 in 2008, Amarillo got itself a brand new bicycle shop with really nice high end cycles.

They're still doing a great business, and these prices will only help that.

Wish I had the 6,000 bucks it takes for a new Orbea.
 
If they can mass manufacture this battery, and it does all that they state, then this would put the EV on solid footing. Looking at the size of that battery pack, I could fit about a dozen of them under my van. Add hub motors on the back wheels, and you have a long range vehicle for which you could provide the fuel yourself.
And if only the rare Earth elements, heavy metals and horribly caustic electrolytes needed for the batteries weren't completely environmentally un-friendly hazardous materials....And if only we didn't burn zillions of tons of coal and squillions of cubic feet of natural gas to provide the electricity....


And if pixies only pissed gasoline, all our troubles would be gone!
 
If they can mass manufacture this battery, and it does all that they state, then this would put the EV on solid footing. Looking at the size of that battery pack, I could fit about a dozen of them under my van. Add hub motors on the back wheels, and you have a long range vehicle for which you could provide the fuel yourself.
And if only the rare Earth elements, heavy metals and horribly caustic electrolytes needed for the batteries weren't completely environmentally un-friendly hazardous materials....And if only we didn't burn zillions of tons of coal and squillions of cubic feet of natural gas to provide the electricity....


And if pixies only pissed gasoline, all our troubles would be gone!

And if only you had a brain you might post something remotely intelligent.:cuckoo:
 
Here's another article about the Kolibri battery that has some additional details.

Cost-effective EV battery passes German tests, recharges in minutes

by Jeff Cobb
GM-VOLT : Chevy Volt Electric Car Site
Apr 12, 2011
(excerpts)

We’re talking potential for reasonably priced electric cars that could travel 300-400 miles on a charge, and be replenished in minutes. If reports we were given prove true, this would mean the future is practically now – not years from now – with safe and durable batteries threatening to relegate petrol cars to merely optional status. According to DBM Energy’s Chief Operating Officer, Markus Röser, a 98.8-kWh version of its battery can be fully recharged inside of six minutes, although he would not divulge how this was accomplished. ...consider the battery’s range potential. One version with over seven times the energy capacity of the Volt’s battery, and 4.75 times power of the LEAF’s battery, had enough juice to propel a converted Audi A2 test mule for more than 400 miles at highway speeds on a single charge. ...last month Germany’s federal agency for materials research and testing – BAM – independently certified DBM’s KOLIBRI battery after a series of eight tests. These were reportedly done according to the UN Test Handbook protocol for lithium batteries, and the battery came out with flying colors. The BAM’s chief investigator, Prof. Volkmar Schroeder, reportedly said the battery cells met “all essential safety tests very well” and were characterized “by a high degree of technical safety.”

After those tests, an Audi A2 powered by the 63-kWh version of the battery being tested was put through four days of driving on a chassis dyno in eastern Germany at the DEKRA test center at the EuroSpeedway Lausitz. The DEKRA test protocol showed the DBM electric Audi A2 went 284.3 miles (454.82 km). This battery had about 45 percent less energy than the initial “supposed” A2 record-setting car last fall, and now the German government has essentially verified its credibility. Actually, DBM estimated the first A2 could have gone 450 miles (721 km) on a single charge. And as for durability, DBM said the KOLIBRI battery’s lifespan should be 10 years, or 5,000 charge cycles. Recharge time for a version like the one that went 284.3 miles might be only four minutes or so. But what would it cost? An estimated price for a (larger) 98.8-kWh version was a paltry $1,100-$1,400 (€800-€1,000).

Apologizing for his English, Röser told GM-Volt the battery is already being used in warehouse equipment, and has other applications pending. “The KOLIBRI technology has run in forklifts for two years – very efficient,” Röser said, “We already delivered 15 batteries for forklifts in 2010/ 2011 and further orders are already placed. The companies we are working with are large logistical companies running warehouses like Papstar, a subsidiary company of Swarowski.” Röser said DBM’s chemistry is indeed superior to that of EV batteries commonly in use today. “The KOLIBRI technology is based on Lithium Metal Polymer basis, the battery on solid matter basis. Through a special battery packaging we reach more efficiency and higher effectiveness, smaller packaging, lower weight and lower prices,” Röser said, “The Li-Ion battery reach about 60-80 percent effectiveness, the KOLIBRI technology about 97 percent. With a 300 kg battery pack of 98 kWh we reach a distance of 600 kilometers without a stop and without a gas engine or range extender.”



(In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.)
 
There is an enormous amount of misinformation going around about clean energy, renewables, non-polluting fuels, etc.. This may be part of a propaganda campaign that the fossil fuel industry has mounted to protect their market dominance and profits. In any case, solar, wind, ocean and other alternatives gets routinely attacked with bogus, spun-up, twisted pseudo-science and lies. One of the myths that gets pushed is that there are no viable alternatives to petroleum that have a sufficiently high energy density for their use in transportation, particularly in aviation. Of course, that is nonsense right off the top, because high-energy-density non-petro bio-fuels have already been developed and tested and will be coming into increasing use in just the next few years. Additionally, liquid hydrogen has an energy density as high as petroleum based fuels, so high, in fact, that it has even been used as a rocket fuel.

The Future of Aviation Biofuels
20 February 2012
(excerpt)
In New York, Bloomberg New Energy Finance said that jatropha-based fuels were the near-term candidate as sustainable aviation fuels available at prices competitive with conventional jet fuel. The BNEF research unit said that it expected jatropha-based jet fuel to be available at $0.86-a-litre ($3.25 per gallon) by 2018. Following the emergence of jatropha-based fuels, BNEF said that aviation fuel made from pyrolysis of woody biomass represented the next most affordable category of aviation biofuels, projecting that jet fuel from this source could be available at $0.90 per litre ($3.40 per gallon) by 2018.

Pure regular alcohol bio-fuel has an energy density a bit lower than gasoline but it is still quite useful for most transportation purposes. Some of the other aliphatic alcohols (methanol, ethanol, propanol, and butanol) that can be produced biologically have both energy densities similar to gasoline and over 25% higher octane ratings.

Biofuels, while technically carbon neutral, still emit CO2 and have other complications associated with them and their production so, other than as an example of an already existing high-energy-density fuel for transportation, let's leave biofuels aside for a later debate and consider some of the other viable high density non-petroleum energy sources for transportation that will almost certainly come to dominate the transport sector in the next decade or so and should eventually replace petroleum fuels altogether.

There are several main viable prospects for powering both surface vehicles and aircraft without the use of fossil fuels of any kind (or any other kind of CO2 emitting fuel, for that matter, even bio-fuels).

Two of the main categories would be electric energy storage and hydrogen storage. Both of these are still in their initial, fast developing stages, with new advances eclipsing earlier developments regularly.

Let's first consider the actual cutting edge of electric energy storage methods. There are two main avenues of research - battery storage and supercapacitors. Some of these advances have been recently developed and are already moving from the 'research and development; stage into the initial, preliminary 'development for production' stages. I’ll get to those after first looking at one new and radical development in battery technology that is already in production and that has already proven itself in limited use.

Objections to electric storage for vehicular travel have generally centered on the cost of the batteries, the weight of the batteries, the length of time to recharge the batteries, and, perhaps primarily, the limited amount of energy that the current generation of production battery technology can pack into a battery of reasonable size and weight. That inability of the current batteries to power a car for much more than a hundred miles or so has been, in addition to the first generation high prices, the main sticking point for consumers.

An enormous amount of research has been directed at overcoming these limitations and great strides have been made along a number of different lines of research, some very recently. Here's a sampling of some of those developments that will, in the fairly near future, dramatically extent the range of electric vehicles, reduce the charge time of the batteries enormously, and significantly reduce the size, cost and weight of the batteries.

First let’s look at a radical new technology just coming on the market that may change the electrical vehicle market much faster than anyone anticipated.

This Breakthrough Will Soon Slash EV Prices Drastically
Wall Street Daily
Justin Fritz
Published Tue, Aug 30th, 2011
(excerpts)
The “Holy Grail” Of Cutting EV Costs
You see, the biggest culprit behind inflated EV prices is the battery. It adds $10,000 or so to an EVs manufacturers suggested retail price (MSRP). What’s worse, owners need to replace the lithium-ion battery every 10 years. So the cost of ownership is a huge deterrent. But DBM Energy’s new advanced battery – Kolibri – is constructed with a special lithium metal polymer. Early reports suggest this battery will cost 89% less than existing batteries and will only need to be replaced approximately every 20 years. Plus, it trounces existing batteries in three other important ways…
~ Weight: A Kolibri is reportedly 29% lighter than the battery pack in a Tesla Roadster.
~ Efficiency: A Kolibri has enough power to keep an Audi (ETR: NSU) A2 cruising for an astonishing 400 miles on a single charge.
~ Charging: You can fully charge a Kolibri battery in just six minutes. The Leaf takes closer to six hours.​
The potential for this new technology seems very promising and the company’s already in talks with major automakers worldwide. It foresees a mainstream rollout of its superior Kolibri battery not too far off. Once this happens, it’s reasonable to assume that you’ll be able to buy a Nissan LEAF for around $26,300. Or $18,800 after factoring in the government tax credit.



DBM Energy's KOLIBRI technology passes safety and performance tests with flying colors
DBM Energy's KOLIBRI Press Release - Free to Reprint

- LMP lithium-metal-polymer battery cells (KOLIBRI) pass comprehensive safety tests

- Independent range test confirms performance and range of KOLIBRI batteries

- Full-scale field trial scheduled for 2011


Berlin, Germany – 1. April 2011 – For over a year the KOLIBRI battery cells developed by DBM Energy have been performing reliably in electrically powered logistics vehicles. In October 2010, as part of a demonstration project, this innovative battery technology powered a conventional passenger car converted to electrical power over a distance exceeding 600 km, setting a worldwide record. 5,000 charging cycles document the range and longevity of the KOLIBRI LMP lithium-metal-polymer battery technology. Independent studies now also confirm the safety and performance of the KOLIBRI technology.

Safety
On 17 January 2011, the German Federal Institute for Materials Research and Testing (BAM - Bundesanstalt für Materialforschung und –prüfung) initiated a comprehensive test program to evaluate the safety aspects of the innovative LMP lithium-metal-polymer battery technology (KOLIBRI) developed by DBM Energy GmbH. The recently completed tests on individual battery cells confirm that the KOLIBRI technology used on the world record-setting drive on 26 October 2010 meets the required safety standards for use in stationary applications as well as in passenger and commercial vehicles.

The safety tests were conducted in accordance with the protocols established in the 5th edition of the UN Transport Test Manual for the Transport of Dangerous Goods published in 2009. The recommended testing methods for lithium batteries serve as an international standard. In eight exhaustive tests series, the KOLIBRI technology was examined to establish its safety when subjected to extreme climate and pressure variations, electrical short-circuiting, overload or inversed polarity as well as strong mechanical forces such as vibrations, show and heavy impact.DMB's LMP cells easily passed the entire range of tests.

"The LMP cells we tested stand out by their high degree of technical safety," said Prof. Schröder in explaining the results of the tests, which had been repeated a number of times. The LMP lithium-metal-polymer battery systems met all the standards set in the UN test series. The cells exhibited no leaks, did not generate heat exceeding 170 degrees Celsius, did not decompose or ignite, and maintained in excess of 90% of electrical tension.

In addition to the UN tests, the battery cells were also tested for fire risks. The LMP cells proved absolutely fire and explosion proof when exposed to direct fire. The BAM's Prof. Schröder concludes: "Overall it can be stated that the KOLIBRI cells completely fulfill all safety requirements for this type of technology."


Performance
Besides BAM's safety tests, the KOLIBRI technology was subjected to an independent range test by German certification institute DEKRA at its test center at the Lausitz EuroSpeedway racetrack in Klettwitz, Germany. The range of the LMP battery system on the Audi A2 test vehicle platform was determined following the procedures set down in the currently applicable ECE-R 101 directive for measuring the range of vehicles equipped with an electric drive. The tests were conducted in facilities and with equipment that fully complied with testing protocol requirements.

At the time of determining testing parameters prior to commencing the test, the vehicle weight – empty weight not including driver – was measured below the approved total mass of 1,500 kilograms. The maximum energy delivered by the LMP battery was measured at 62.928 kWh. By comparison, the battery capacity registered at the time of the world record in October 2010 was 98 kWh. The lower capacity, however, proved sufficient for the range tests as per ECE-R 101, which require that a distance of at least 300 km be covered.

All test results of the KOLIBRI technology were subsequently verified and validated by DEKRA. This includes the initial battery charge after handing over the vehicle, recharging the battery over charging period of 12 hours, discharging the battery over a distance of 100 km at a constant speed of 70 km/h as well as determining the vehicle's driving resistance. The peak speed measurement during the 30-minute maximum speed segment was 100 km/h. The required condition of covering a distance of 300 km within 7 days was met in one session on a roller dynamometer, indicating a range of 454.83 kilometers with the 62,928 kWh LMP battery. Adjusted for the battery capacity of 98 kWh at the time of the worldwide range record, the range would have been 714 km. The efficiency of the LMP battery was determined to be at 97%.

dbm-energy-a2-testing-630.jpg

The test vehicle equipped with the KOLIBRI battery technology will be on
display on the BMWi (Federal Ministry of Economics and Technology)
stand in Hall 2 at the Hannover Messe Industrie trade fair and expo from 4
to 8 April 2011.


About DBM Energy
DBM Energy GmbH , founded in 2009 and based in Berlin, Germany, manufactures high-performance energy storage systems. DBM Energy has developed an innovative battery technology: KOLIBRI. This lithium-based intelligent energy storage system is monitored, controlled and optimized via integrated controllers to ensure optimum efficiency. The KOLIBRI technology finds universal application as an energy storage system for stationary equipment, electric passenger vehicles and commercial vehicles in the logistics and manufacturing industries. As part of a demonstration project, an everyday vehicle modified for electric power and equipped with the KOLIBRI technology covered a distance exceeding 600 km with a single charge in October 2010, setting a worldwide record.




Converted Audi A2 claims new electric vehicle distance record: 372 miles
Oct 27th 2010
(excerpts)
Berlin energy supplier Lekker Energie and battery company DBM Energy have teamed up to electrify an Audi A2 and take it on an attention-getting 605 km (379.9 mile) journey from Munich to Berlin, Germany. The run, conducted at night, was such a success that the team is claiming an electric vehicle world record of sorts. While the Japan EV Club managed to squeeze 1,003 km (623 miles) from their Mira on a track driving a steady 40km/h (25 miles per hour), this latest feat was performed on public roads at an average speed of 55 miles per hour. The Germans even had 18 percent of the pack's 115 kWh left at the end.

While the length and speed of the trip are all very nice, the real story here seems to be the batteries that made it possible. Developed sans government investment, the lithium metal polymer (LMP) cells, which Lekker and DBM refer to as Kolibri AlphaPolymer Technology, are said to be lighter and more powerful than traditional cells and operate with an efficiency of 97 percent. They were also compact enough to be integrated into the car without giving up passenger seating or trunk space. Want more amazing? Apparently, when connected to a generous enough power supply, the batteries can recharge in just six minutes. Also, when asked when production could start, DBM Energy CEO Mirko Hannemann answered, "now." Does it all just sound too good to be true? Maybe, but we expect we'll get more information – and confirmation from other sources one way or the other – real soon.



(In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.)


Yup.........ahhhhhh ( takes toke on ciggy in classic Denis Leary fashion)

You mean the electric cars that you cant turn on the a/c or run the lights if you want your battery to last more than 5 mintues!!:funnyface::funnyface::funnyface:


We're all real sure Americans will be chomping at the bit to buy geeky little gay cars with batteries that blow up in the garage and burn down the house!!!:D:D:D


Gotta hand it to the k00ks though..........they do have creative minds!!!:coffee:
 
Last edited:
Now Steve, that is just yap-yap. Didn't bother to read the specs and tests on that battery, did you. A 100 kwh battery will power most cars a good distance, and a very quick recharge puts it on equal footing with ICE's. As gasoline heads for $5 or more, an EV with this battery would sell like hotcakes.
 
In the OP, I mentioned that there have been a number of important advancements in battery technology recently. We started by looking at the new DBM Energy KOLIBRI battery because that one seems poised to take off the soonest but there a number of otrher pomising developments in the field of electical storage that have the potential to dramitically reduce the cost and recharge times while extenting the range of electrical vehicles. Let's look at some of them.

Better Batteries
New technology improves both energy capacity and charge rate in rechargeable batteries
Northwestern University
NewsCenter - Research
November 14, 2011
(excerpts)
EVANSTON, Ill. --- Imagine a cellphone battery that stayed charged for more than a week and recharged in just 15 minutes. That dream battery could be closer to reality thanks to Northwestern University research. A team of engineers has created an electrode for lithium-ion batteries -- rechargeable batteries such as those found in cellphones and iPods -- that allows the batteries to hold a charge up to 10 times greater than current technology. Batteries with the new electrode also can charge 10 times faster than current batteries. The researchers combined two chemical engineering approaches to address two major battery limitations -- energy capacity and charge rate -- in one fell swoop. In addition to better batteries for cellphones and iPods, the technology could pave the way for more efficient, smaller batteries for electric cars. The technology could be seen in the marketplace in the next three to five years, the researchers said. A paper describing the research is published by the journal Advanced Energy Materials. “We have found a way to extend a new lithium-ion battery’s charge life by 10 times,” said Harold H. Kung, lead author of the paper. “Even after 150 charges, which would be one year or more of operation, the battery is still five times more effective than lithium-ion batteries on the market today.”


New battery design could give electric vehicles a jolt
Significant advance in battery architecture could be breakthrough for electric vehicles and grid storage.
MIT News Office

June 5, 2011
(excerpts)
A radically new approach to the design of batteries, developed by researchers at MIT, could provide a lightweight and inexpensive alternative to existing batteries for electric vehicles and the power grid. The technology could even make “refueling” such batteries as quick and easy as pumping gas into a conventional car. The new battery relies on an innovative architecture called a semi-solid flow cell, in which solid particles are suspended in a carrier liquid and pumped through the system. In this design, the battery’s active components — the positive and negative electrodes, or cathodes and anodes — are composed of particles suspended in a liquid electrolyte. These two different suspensions are pumped through systems separated by a filter, such as a thin porous membrane.

The new design should make it possible to reduce the size and the cost of a complete battery system, including all of its structural support and connectors, to about half the current levels. That dramatic reduction could be the key to making electric vehicles fully competitive with conventional gas- or diesel-powered vehicles, the researchers say. Another potential advantage is that in vehicle applications, such a system would permit the possibility of simply “refueling” the battery by pumping out the liquid slurry and pumping in a fresh, fully charged replacement, or by swapping out the tanks like tires at a pit stop, while still preserving the option of simply recharging the existing material when time permits.



Development boosts lithium-ion battery power by 8-fold
Researchers at Berkeley have developed a new kind of anode polymer can absorb eight times the lithium of current designs.

September 25, 2011
(excerpts)
A team of scientists at Berkeley Lab have designed a new kind of anode that can absorb eight times the lithium of current designs, and has maintained its greatly increased energy capacity after over a year of testing and many hundreds of charge-discharge cycles. The new anodes are made from low-cost materials, compatible with standard lithium-battery manufacturing technologies.


Much more to come....



Lithium–sulfur battery
From Wikipedia, the free encyclopedia
The lithium–sulfur battery (Li–S battery) is a rechargeable galvanic cell with a very high energy density.[3] By virtue of the low atomic weight of lithium and moderate weight of sulfur, Li–S batteries are relatively light; about the density of water. They were demonstrated on the longest and highest-altitude solar-powered airplane flight in August, 2008.[4] Lithium–sulfur batteries may succeed lithium-ion cells because of their higher energy density and the low cost of sulfur. There is much interest in using them for electric vehicles.

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy
Stanford University

Nano Lett., 2010, 10 (4), pp 1486–1491
DOI: 10.1021/nl100504q
Publication Date (Web): February 25, 2010
Abstract
Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg-1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (410 Wh kg-1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg-1 based on the mass of the active electrode materials.




Speaking of energy density, these new batteries have a very high energy density. As the abstract says: "This new battery yields a theoretical specific energy of 1550 Wh kg-1". Compare that to a lead acid battery like the one in your car that can store about 30 Wh/kg, or one of the nickel-cadmium batteries that stores about 50 Wh/kg, or one of the nickel-metal hydride batteries that can store about 60 Wh/kg or a new lithium-ion EV battery that can reach about 200 Wh/kg.


***
 
If they can mass manufacture that battery with 50% of the theoretical efficiency, that would stretch the legs of a current Tesla to nearly 900 miles.
 
Meeting sales goals for electric cars ( 3% of market share to be profitable ) means sales have to be 50 times higher than current sales.............

Wishful Thinking Vs. Reality: Framing The Future Of Fuel-Efficient Cars : NPR Ombudsman : NPR


Even the people at NPR think that is damn near impossible:up:.............especially given that new technology for 55mpg cars will be soon within reach.


Hate to be the one who is always blowing up Rolling Thunders threads but................


:blowup::blowup::blowup::blowup::blowup::blowup::blowup::blowup:


Once again..........we see the typical liberal failing to recognize the most important question that needs to always be answered................



"As compared to what?"


Market analysis fAiL indeed!!
 
Last edited:
A battery at 1000 wh/kg costing 50% of current batteries of the same weight, and you won't be able to make them fast enough. With $5+ gasoline, those batteries will sell both EVs and solar panels.

With a 115 kwh battery pack in an automobile, you also have a backup battery system for your home in case of major long term electrical outage. Combined with the rapidly decreasing prices in photovoltaics, the development of a cheap large capacity battery will be a win-win for all. And if Detroit develops it, and markets it first in high quality vehicles, we can take back the world market in vehicles.
 
Yanno..........the last time gas prices hit above 4.00 in 2008, Amarillo got itself a brand new bicycle shop with really nice high end cycles.

They're still doing a great business, and these prices will only help that.

Wish I had the 6,000 bucks it takes for a new Orbea.

Shit, for that much money I can get a good used Harley. Not as energy efficient as your Orbea, but a helluva lot faster to get to work, and lots more efficient than my Dodge 3/4 diesel.
 
Yanno..........the last time gas prices hit above 4.00 in 2008, Amarillo got itself a brand new bicycle shop with really nice high end cycles.

They're still doing a great business, and these prices will only help that.

Wish I had the 6,000 bucks it takes for a new Orbea.

Shit, for that much money I can get a good used Harley. Not as energy efficient as your Orbea, but a helluva lot faster to get to work, and lots more efficient than my Dodge 3/4 diesel.

LOL. Well, some people like Ferraris. No differant than a $6000 bike.
 
Yanno..........the last time gas prices hit above 4.00 in 2008, Amarillo got itself a brand new bicycle shop with really nice high end cycles.

They're still doing a great business, and these prices will only help that.

Wish I had the 6,000 bucks it takes for a new Orbea.

Shit, for that much money I can get a good used Harley. Not as energy efficient as your Orbea, but a helluva lot faster to get to work, and lots more efficient than my Dodge 3/4 diesel.

LOL. Well, some people like Ferraris. No differant than a $6000 bike.

I like good quality bicycles. Interestingly enough, if you were to ride a department store Huffy like I rode my other bikes, you'd be buying a new one every 3-6 months as the frames would break and the components would wear out.

Currently, I'm on a steel Lemond Zurich with Mavic deep dish aero rims and Campagnolo Chorus ergopower drivetrain. Had that bike since 1996 or so and it still runs like a dream.
 
Make no mistake............the wet dream of every single environmentalist nut job is that by 2020, we are all driving one of these.................

1_seater_microcar_cqde8.jpg



and IM not even kidding............
 
Thankfully for the vast majority of us, tens of millions of Americans still want to drive cars..............

Like this....................

41058656460a86577b8194d85867-4.jpg



and not one of them would be caught dead in one of those 2 door SPECKS
 

Forum List

Back
Top