Stanford study quietly published at NIH.gov proves face masks are absolutely worthless against Covid

Lefties are going to have to attack the source on this one, since they won't be able to dispute the content.

Nice try but nope. There are countless medical... that is medical websites that confirm that masks worn in crowded public areas reduce the amount of viral particles released into the air by coughing, sneezing and simply exhaling by an infected person. Masks also reduce the distance any viral particles will travel. As for everyday masks causing hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, again, nope. But if you can provide three, no, we'll say two actual accredited medical websites that state otherwise, you're in business. The American Conservative Movement website won't do. Neither will anything from DC Comics or The Gateway Pundit.
Yes, leftists sure do like to give lip service to science, but not when is disagrees with their dogma.

But you're on record as claiming Stanford University and the National Institute of Health are not accredited medical sources.
I'm on recorded as claiming that someone affiliated with Stanford (if he really is), does not make for a credible source. You are citing a published study that has been dismissed by the consensus of the medical profession. That's why it is in the American Conservative Movement website and not at the Johns Hopkins website.
I linked to the study. You didn't read it, preferring instead to stick your fingers in your ears and yell LA LA LA I CANT HEAR YOU.

Exactly as programmed.
As I have said a few times, I have found no evidence that the study actually has any real affiliation with Stanford or is in any way a study authorized by the Stanford University School of Medicine.
The link right in the beginning of the article takes you right to the study. The affiliation with Stanford is right there in the study.

You have failed miserably to quote anything that you dispute from the article, so you are now trying to attack the source. When lefties cannot dispute the content of an article or post, the only thing they have left is to evade or to attack the source. Your next post STILL won't be a quote of something you dispute from the article with an explanation of why, it will just be another evasion or another attack on the source.
As I have said, I dispute the article saying that masks are ineffective at stopping the spread of covid-19, and I dispute the article's claim that ordinary masks can cause breathing difficulties suggested in the article. Furthermore, I have cited other valid, scientific and medical sources that refute your article. Just for your viewing enjoyment and for the irony, I cited links to Stanford University. Here is a link to the AMA with countless articles relating to the wearing of masks... | American Medical Association . That is The American Medical Association, not some conservative website.
 
Lefties are going to have to attack the source on this one, since they won't be able to dispute the content.

Nice try but nope. There are countless medical... that is medical websites that confirm that masks worn in crowded public areas reduce the amount of viral particles released into the air by coughing, sneezing and simply exhaling by an infected person. Masks also reduce the distance any viral particles will travel. As for everyday masks causing hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, again, nope. But if you can provide three, no, we'll say two actual accredited medical websites that state otherwise, you're in business. The American Conservative Movement website won't do. Neither will anything from DC Comics or The Gateway Pundit.
Yes, leftists sure do like to give lip service to science, but not when is disagrees with their dogma.

But you're on record as claiming Stanford University and the National Institute of Health are not accredited medical sources.
I'm on recorded as claiming that someone affiliated with Stanford (if he really is), does not make for a credible source. You are citing a published study that has been dismissed by the consensus of the medical profession. That's why it is in the American Conservative Movement website and not at the Johns Hopkins website.
I linked to the study. You didn't read it, preferring instead to stick your fingers in your ears and yell LA LA LA I CANT HEAR YOU.

Exactly as programmed.
As I have said a few times, I have found no evidence that the study actually has any real affiliation with Stanford or is in any way a study authorized by the Stanford University School of Medicine.
The link right in the beginning of the article takes you right to the study. The affiliation with Stanford is right there in the study.

You have failed miserably to quote anything that you dispute from the article, so you are now trying to attack the source. When lefties cannot dispute the content of an article or post, the only thing they have left is to evade or to attack the source. Your next post STILL won't be a quote of something you dispute from the article with an explanation of why, it will just be another evasion or another attack on the source.
As I have said, I dispute the article saying that masks are ineffective at stopping the spread of covid-19, and I dispute the article's claim that ordinary masks can cause breathing difficulties suggested in the article. Furthermore, I have cited other valid, scientific and medical sources that refute your article. Just for your viewing enjoyment and for the irony, I cited links to Stanford University. Here is a link to the AMA with countless articles relating to the wearing of masks... | American Medical Association . That is The American Medical Association, not some conservative website.
Of course you did not provide a quote of what exactly you dispute. When lefties can't dispute the content, they evade or attack the source. There is a reason why you keep evading posting a quote that you dispute, along with why you dispute it.
 
In quotes below is the part of the article that I dispute. It goes contrary to every medical website there is. Every one of them. You can get the anti-science, anti-vaxxers to give you thumbs-up until the cows come home but every object, halfway scientific literate person knows that the article in your link is a shame. I actually submitted links to several actual, valid medical websites. You did not look at them, did you? They are the real deal, not this silliness you posted.

"Introduction

Facemasks are part of non-pharmaceutical interventions providing some breathing barrier to the mouth and nose that have been utilized for reducing the transmission of respiratory pathogens [1]. Facemasks can be medical and non-medical, where two types of the medical masks primarily used by healthcare workers [1], [2]. The first type is National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask, a filtering face-piece respirator, and the second type is a surgical mask [1]. The designed and intended uses of N95 and surgical masks are different in the type of protection they potentially provide. The N95s are typically composed of electret filter media and seal tightly to the face of the wearer, whereas surgical masks are generally loose fitting and may or may not contain electret-filtering media. The N95s are designed to reduce the wearer’s inhalation exposure to infectious and harmful particles from the environment such as during extermination of insects. In contrast, surgical masks are designed to provide a barrier protection against splash, spittle and other body fluids to spray from the wearer (such as surgeon) to the sterile environment (patient during operation) for reducing the risk of contamination [1].

The third type of facemasks are the non-medical cloth or fabric masks. The non-medical facemasks are made from a variety of woven and non-woven materials such as Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk. Although non-medical cloth or fabric facemasks are neither a medical device nor personal protective equipment, some standards have been developed by the French Standardization Association (AFNOR Group) to define a minimum performance for filtration and breathability capacity [2]. The current article reviews the scientific evidences with respect to safety and efficacy of wearing facemasks, describing the physiological and psychological effects and the potential long-term consequences on health.

MyPillow NOQ
Hypothesis
On January 30, 2020, the World Health Organization (WHO) announced a global public health emergency of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causing illness of coronavirus disease-2019 (COVID-19) [3]. As of October 1, 2020, worldwide 34,166,633 cases were reported and 1,018,876 have died with virus diagnosis. Interestingly, 99% of the detected cases with SARS-CoV-2 are asymptomatic or have mild condition, which contradicts with the virus name (severe acute respiratory syndrome-coronavirus-2) [4]. Although infection fatality rate (number of death cases divided by number of reported cases) initially seems quite high 0.029 (2.9%) [4], this overestimation related to limited number of COVID-19 tests performed which biases towards higher rates. Given the fact that asymptomatic or minimally symptomatic cases is several times higher than the number of reported cases, the case fatality rate is considerably less than 1% [5]. This was confirmed by the head of National Institute of Allergy and Infectious Diseases from US stating, “the overall clinical consequences of COVID-19 are similar to those of severe seasonal influenza” [5], having a case fatality rate of approximately 0.1% [5], [6], [7], [8]. In addition, data from hospitalized patients with COVID-19 and general public indicate that the majority of deaths were among older and chronically ill individuals, supporting the possibility that the virus may exacerbates existing conditions but rarely causes death by itself [9], [10]. SARS-CoV-2 primarily affects respiratory system and can cause complications such as acute respiratory distress syndrome (ARDS), respiratory failure and death [3], [9]. It is not clear however, what the scientific and clinical basis for wearing facemasks as protective strategy, given the fact that facemasks restrict breathing, causing hypoxemia and hypercapnia and increase the risk for respiratory complications, self-contamination and exacerbation of existing chronic conditions [2], [11], [12], [13], [14].

Of note, hyperoxia or oxygen supplementation (breathing air with high partial O2 pressures that above the sea levels) has been well established as therapeutic and curative practice for variety acute and chronic conditions including respiratory complications [11], [15]. It fact, the current standard of care practice for treating hospitalized patients with COVID-19 is breathing 100% oxygen [16], [17], [18]. Although several countries mandated wearing facemask in health care settings and public areas, scientific evidences are lacking supporting their efficacy for reducing morbidity or mortality associated with infectious or viral diseases [2], [14], [19]. Therefore, it has been hypothesized: 1) the practice of wearing facemasks has compromised safety and efficacy profile, 2) Both medical and non-medical facemasks are ineffective to reduce human-to-human transmission and infectivity of SARS-CoV-2 and COVID-19, 3) Wearing facemasks has adverse physiological and psychological effects, 4) Long-term consequences of wearing facemasks on health are detrimental.

Evolution of hypothesis
Breathing Physiology
Breathing is one of the most important physiological functions to sustain life and health. Human body requires a continuous and adequate oxygen (O2) supply to all organs and cells for normal function and survival. Breathing is also an essential process for removing metabolic byproducts [carbon dioxide (CO2)] occurring during cell respiration [12], [13]. It is well established that acute significant deficit in O2 (hypoxemia) and increased levels of CO2 (hypercapnia) even for few minutes can be severely harmful and lethal, while chronic hypoxemia and hypercapnia cause health deterioration, exacerbation of existing conditions, morbidity and ultimately mortality [11], [20], [21], [22]. Emergency medicine demonstrates that 5–6 min of severe hypoxemia during cardiac arrest will cause brain death with extremely poor survival rates [20], [21], [22], [23]. On the other hand, chronic mild or moderate hypoxemia and hypercapnia such as from wearing facemasks resulting in shifting to higher contribution of anaerobic energy metabolism, decrease in pH levels and increase in cells and blood acidity, toxicity, oxidative stress, chronic inflammation, immunosuppression and health deterioration [24], [11], [12], [13].

Efficacy of facemasks
The physical properties of medical and non-medical facemasks suggest that facemasks are ineffective to block viral particles due to their difference in scales [16], [17], [25]. According to the current knowledge, the virus SARS-CoV-2 has a diameter of 60 nm to 140 nm [nanometers (billionth of a meter)] [16], [17], while medical and non-medical facemasks’ thread diameter ranges from 55 µm to 440 µm [micrometers (one millionth of a meter), which is more than 1000 times larger [25]. Due to the difference in sizes between SARS-CoV-2 diameter and facemasks thread diameter (the virus is 1000 times smaller), SARS-CoV-2 can easily pass through any facemask [25]. In addition, the efficiency filtration rate of facemasks is poor, ranging from 0.7% in non-surgical, cotton-gauze woven mask to 26% in cotton sweeter material [2]. With respect to surgical and N95 medical facemasks, the efficiency filtration rate falls to 15% and 58%, respectively when even small gap between the mask and the face exists [25].

Learn more about RevenueStripe...

Clinical scientific evidence challenges further the efficacy of facemasks to block human-to-human transmission or infectivity. A randomized controlled trial (RCT) of 246 participants [123 (50%) symptomatic)] who were allocated to either wearing or not wearing surgical facemask, assessing viruses transmission including coronavirus [26]. The results of this study showed that among symptomatic individuals (those with fever, cough, sore throat, runny nose ect…) there was no difference between wearing and not wearing facemask for coronavirus droplets transmission of particles of >5 µm. Among asymptomatic individuals, there was no droplets or aerosols coronavirus detected from any participant with or without the mask, suggesting that asymptomatic individuals do not transmit or infect other people [26]. This was further supported by a study on infectivity where 445 asymptomatic individuals were exposed to asymptomatic SARS-CoV-2 carrier (been positive for SARS-CoV-2) using close contact (shared quarantine space) for a median of 4 to 5 days. The study found that none of the 445 individuals was infected with SARS-CoV-2 confirmed by real-time reverse transcription polymerase [27].

A meta-analysis among health care workers found that compared to no masks, surgical mask and N95 respirators were not effective against transmission of viral infections or influenza-like illness based on six RCTs [28]. Using separate analysis of 23 observational studies, this meta-analysis found no protective effect of medical mask or N95 respirators against SARS virus [28]. A recent systematic review of 39 studies including 33,867 participants in community settings (self-report illness), found no difference between N95 respirators versus surgical masks and surgical mask versus no masks in the risk for developing influenza or influenza-like illness, suggesting their ineffectiveness of blocking viral transmissions in community settings [29].

Another meta-analysis of 44 non-RCT studies (n = 25,697 participants) examining the potential risk reduction of facemasks against SARS, middle east respiratory syndrome (MERS) and COVID-19 transmissions [30]. The meta-analysis included four specific studies on COVID-19 transmission (5,929 participants, primarily health-care workers used N95 masks). Although the overall findings showed reduced risk of virus transmission with facemasks, the analysis had severe limitations to draw conclusions. One of the four COVID-19 studies had zero infected cases in both arms, and was excluded from meta-analytic calculation. Other two COVID-19 studies had unadjusted models, and were also excluded from the overall analysis. The meta-analytic results were based on only one COVID-19, one MERS and 8 SARS studies, resulting in high selection bias of the studies and contamination of the results between different viruses. Based on four COVID-19 studies, the meta-analysis failed to demonstrate risk reduction of facemasks for COVID-19 transmission, where the authors reported that the results of meta-analysis have low certainty and are inconclusive [30].

In early publication the WHO stated that “facemasks are not required, as no evidence is available on its usefulness to protect non-sick persons” [14]. In the same publication, the WHO declared that “cloth (e.g. cotton or gauze) masks are not recommended under any circumstance” [14]. Conversely, in later publication the WHO stated that the usage of fabric-made facemasks (Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk) is a general community practice for “preventing the infected wearer transmitting the virus to others and/or to offer protection to the healthy wearer against infection (prevention)” [2]. The same publication further conflicted itself by stating that due to the lower filtration, breathability and overall performance of fabric facemasks, the usage of woven fabric mask such as cloth, and/or non-woven fabrics, should only be considered for infected persons and not for prevention practice in asymptomatic individuals [2]. The Central for Disease Control and Prevention (CDC) made similar recommendation, stating that only symptomatic persons should consider wearing facemask, while for asymptomatic individuals this practice is not recommended [31]. Consistent with the CDC, clinical scientists from Departments of Infectious Diseases and Microbiology in Australia counsel against facemasks usage for health-care workers, arguing that there is no justification for such practice while normal caring relationship between patients and medical staff could be compromised [32]. Moreover, the WHO repeatedly announced that “at present, there is no direct evidence (from studies on COVID-19) on the effectiveness face masking of healthy people in the community to prevent infection of respiratory viruses, including COVID-19”[2]. Despite these controversies, the potential harms and risks of wearing facemasks were clearly acknowledged. These including self-contamination due to hand practice or non-replaced when the mask is wet, soiled or damaged, development of facial skin lesions, irritant dermatitis or worsening acne and psychological discomfort. Vulnerable populations such as people with mental health disorders, developmental disabilities, hearing problems, those living in hot and humid environments, children and patients with respiratory conditions are at significant health risk for complications and harm [2].







0:47 / 1:15:50

Physiological effects of wearing facemasks
Wearing facemask mechanically restricts breathing by increasing the resistance of air movement during both inhalation and exhalation process [12], [13]. Although, intermittent (several times a week) and repetitive (10–15 breaths for 2–4 sets) increase in respiration resistance may be adaptive for strengthening respiratory muscles [33], [34], prolonged and continues effect of wearing facemask is maladaptive and could be detrimental for health [11], [12], [13]. In normal conditions at the sea level, air contains 20.93% O2 and 0.03% CO2, providing partial pressures of 100 mmHg and 40 mmHg for these gases in the arterial blood, respectively. These gas concentrations significantly altered when breathing occurs through facemask. A trapped air remaining between the mouth, nose and the facemask is rebreathed repeatedly in and out of the body, containing low O2 and high CO2 concentrations, causing hypoxemia and hypercapnia [35], [36], [11], [12], [13]. Severe hypoxemia may also provoke cardiopulmonary and neurological complications and is considered an important clinical sign in cardiopulmonary medicine [37], [38], [39], [40], [41], [42]. Low oxygen content in the arterial blood can cause myocardial ischemia, serious arrhythmias, right or left ventricular dysfunction, dizziness, hypotension, syncope and pulmonary hypertension [43]. Chronic low-grade hypoxemia and hypercapnia as result of using facemask can cause exacerbation of existing cardiopulmonary, metabolic, vascular and neurological conditions [37], [38], [39], [40], [41], [42]. Table 1 summarizes the physiological, psychological effects of wearing facemask and their potential long-term consequences for health.

Table 1. Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences.

Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences

In addition to hypoxia and hypercapnia, breathing through facemask residues bacterial and germs components on the inner and outside layer of the facemask. These toxic components are repeatedly rebreathed back into the body, causing self-contamination. Breathing through facemasks also increases temperature and humidity in the space between the mouth and the mask, resulting a release of toxic particles from the mask’s materials [1], [2], [19], [26], [35], [36]. A systematic literature review estimated that aerosol contamination levels of facemasks including 13 to 202,549 different viruses [1]. Rebreathing contaminated air with high bacterial and toxic particle concentrations along with low O2 and high CO2 levels continuously challenge the body homeostasis, causing self-toxicity and immunosuppression [1], [2], [19], [26], [35], [36].

A study on 39 patients with renal disease found that wearing N95 facemask during hemodialysis significantly reduced arterial partial oxygen pressure (from PaO2 101.7 to 92.7 mm Hg), increased respiratory rate (from 16.8 to 18.8 breaths/min), and increased the occurrence of chest discomfort and respiratory distress [35]. Respiratory Protection Standards from Occupational Safety and Health Administration, US Department of Labor states that breathing air with O2 concentration below 19.5% is considered oxygen-deficiency, causing physiological and health adverse effects. These include increased breathing frequency, accelerated heartrate and cognitive impairments related to thinking and coordination [36]. A chronic state of mild hypoxia and hypercapnia has been shown as primarily mechanism for developing cognitive dysfunction based on animal studies and studies in patients with chronic obstructive pulmonary disease [44].

The adverse physiological effects were confirmed in a study of 53 surgeons where surgical facemask were used during a major operation. After 60 min of facemask wearing the oxygen saturation dropped by more than 1% and heart rate increased by approximately five beats/min [45]. Another study among 158 health-care workers using protective personal equipment primarily N95 facemasks reported that 81% (128 workers) developed new headaches during their work shifts as these become mandatory due to COVID-19 outbreak. For those who used the N95 facemask greater than 4 h per day, the likelihood for developing a headache during the work shift was approximately four times higher [Odds ratio = 3.91, 95% CI (1.35–11.31) p = 0.012], while 82.2% of the N95 wearers developed the headache already within ≤10 to 50 min [46].

With respect to cloth facemask, a RCT using four weeks follow up compared the effect of cloth facemask to medical masks and to no masks on the incidence of clinical respiratory illness, influenza-like illness and laboratory-confirmed respiratory virus infections among 1607 participants from 14 hospitals [19]. The results showed that there were no difference between wearing cloth masks, medical masks and no masks for incidence of clinical respiratory illness and laboratory-confirmed respiratory virus infections. However, a large harmful effect with more than 13 times higher risk [Relative Risk = 13.25 95% CI (1.74 to 100.97) was observed for influenza-like illness among those who were wearing cloth masks [19]. The study concluded that cloth masks have significant health and safety issues including moisture retention, reuse, poor filtration and increased risk for infection, providing recommendation against the use of cloth masks [19].

Psychological effects of wearing facemasks
Psychologically, wearing facemask fundamentally has negative effects on the wearer and the nearby person. Basic human-to-human connectivity through face expression is compromised and self-identity is somewhat eliminated [47], [48], [49]. These dehumanizing movements partially delete the uniqueness and individuality of person who wearing the facemask as well as the connected person [49]. Social connections and relationships are basic human needs, which innately inherited in all people, whereas reduced human-to-human connections are associated with poor mental and physical health [50], [51]. Despite escalation in technology and globalization that would presumably foster social connections, scientific findings show that people are becoming increasingly more socially isolated, and the prevalence of loneliness is increasing in last few decades [50], [52]. Poor social connections are closely related to isolation and loneliness, considered significant health related risk factors [50], [51], [52], [53].

A meta-analysis of 91 studies of about 400,000 people showed a 13% increased morality risk among people with low compare to high contact frequency [53]. Another meta-analysis of 148 prospective studies (308,849 participants) found that poor social relationships was associated with 50% increased mortality risk. People who were socially isolated or fell lonely had 45% and 40% increased mortality risk, respectively. These findings were consistent across ages, sex, initial health status, cause of death and follow-up periods [52]. Importantly, the increased risk for mortality was found comparable to smoking and exceeding well-established risk factors such as obesity and physical inactivity [52]. An umbrella review of 40 systematic reviews including 10 meta-analyses demonstrated that compromised social relationships were associated with increased risk of all-cause mortality, depression, anxiety suicide, cancer and overall physical illness [51].

As described earlier, wearing facemasks causing hypoxic and hypercapnic state that constantly challenges the normal homeostasis, and activates “fight or flight” stress response, an important survival mechanism in the human body [11], [12], [13]. The acute stress response includes activation of nervous, endocrine, cardiovascular, and the immune systems [47], [54], [55], [56]. These include activation of the limbic part of the brain, release stress hormones (adrenalin, neuro-adrenalin and cortisol), changes in blood flow distribution (vasodilation of peripheral blood vessels and vasoconstriction of visceral blood vessels) and activation of the immune system response (secretion of macrophages and natural killer cells) [47], [48]. Encountering people who wearing facemasks activates innate stress-fear emotion, which is fundamental to all humans in danger or life threating situations, such as death or unknown, unpredictable outcome. While acute stress response (seconds to minutes) is adaptive reaction to challenges and part of the survival mechanism, chronic and prolonged state of stress-fear is maladaptive and has detrimental effects on physical and mental health. The repeatedly or continuously activated stress-fear response causes the body to operate on survival mode, having sustain increase in blood pressure, pro-inflammatory state and immunosuppression [47], [48].

Long-Term health consequences of wearing facemasks
Long-term practice of wearing facemasks has strong potential for devastating health consequences. Prolonged hypoxic-hypercapnic state compromises normal physiological and psychological balance, deteriorating health and promotes the developing and progression of existing chronic diseases [23], [38], [39], [43], [47], [48], [57], [11], [12], [13]. For instance, ischemic heart disease caused by hypoxic damage to the myocardium is the most common form of cardiovascular disease and is a number one cause of death worldwide (44% of all non-communicable diseases) with 17.9 million deaths occurred in 2016 [57]. Hypoxia also playing an important role in cancer burden [58]. Cellular hypoxia has strong mechanistic feature in promoting cancer initiation, progression, metastasis, predicting clinical outcomes and usually presents a poorer survival in patients with cancer. Most solid tumors present some degree of hypoxia, which is independent predictor of more aggressive disease, resistance to cancer therapies and poorer clinical outcomes [59], [60]. Worth note, cancer is one of the leading causes of death worldwide, with an estimate of more than 18 million new diagnosed cases and 9.6 million cancer-related deaths occurred in 2018 [61].

With respect to mental health, global estimates showing that COVID-19 will cause a catastrophe due to collateral psychological damage such as quarantine, lockdowns, unemployment, economic collapse, social isolation, violence and suicides [62], [63], [64]. Chronic stress along with hypoxic and hypercapnic conditions knocks the body out of balance, and can cause headaches, fatigue, stomach issues, muscle tension, mood disturbances, insomnia and accelerated aging [47], [48], [65], [66], [67]. This state suppressing the immune system to protect the body from viruses and bacteria, decreasing cognitive function, promoting the developing and exacerbating the major health issues including hypertension, cardiovascular disease, diabetes, cancer, Alzheimer disease, rising anxiety and depression states, causes social isolation and loneliness and increasing the risk for prematurely mortality [47], [48], [51], [56], [66].

Conclusion
The existing scientific evidences challenge the safety and efficacy of wearing facemask as preventive intervention for COVID-19. The data suggest that both medical and non-medical facemasks are ineffective to block human-to-human transmission of viral and infectious disease such SARS-CoV-2 and COVID-19, supporting against the usage of facemasks. Wearing facemasks has been demonstrated to have substantial adverse physiological and psychological effects. These include hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, activation of fear and stress response, rise in stress hormones, immunosuppression, fatigue, headaches, decline in cognitive performance, predisposition for viral and infectious illnesses, chronic stress, anxiety and depression. Long-term consequences of wearing facemask can cause health deterioration, developing and progression of chronic diseases and premature death. Governments, policy makers and health organizations should utilize prosper and scientific evidence-based approach with respect to wearing facemasks, when the latter is considered as preventive intervention for public health."
 
Lefties are going to have to attack the source on this one, since they won't be able to dispute the content.

Nice try but nope. There are countless medical... that is medical websites that confirm that masks worn in crowded public areas reduce the amount of viral particles released into the air by coughing, sneezing and simply exhaling by an infected person. Masks also reduce the distance any viral particles will travel. As for everyday masks causing hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, again, nope. But if you can provide three, no, we'll say two actual accredited medical websites that state otherwise, you're in business. The American Conservative Movement website won't do. Neither will anything from DC Comics or The Gateway Pundit.
Yes, leftists sure do like to give lip service to science, but not when is disagrees with their dogma.

But you're on record as claiming Stanford University and the National Institute of Health are not accredited medical sources.
I'm on recorded as claiming that someone affiliated with Stanford (if he really is), does not make for a credible source. You are citing a published study that has been dismissed by the consensus of the medical profession. That's why it is in the American Conservative Movement website and not at the Johns Hopkins website.
I linked to the study. You didn't read it, preferring instead to stick your fingers in your ears and yell LA LA LA I CANT HEAR YOU.

Exactly as programmed.
As I have said a few times, I have found no evidence that the study actually has any real affiliation with Stanford or is in any way a study authorized by the Stanford University School of Medicine.
So?
 
Technical B. S. aside, if Covid is known to be transmitted by mouth and nasal discharge why wouldn't masks be effective? Are they going to tell us that condoms aren't effective in the spread of V.D.?
 
mask would only work if it's temporary use only. ie. you replace it everytime it gets wet from your breath. Using the same mask over and over again could give you swore throats and bread bacteria. And why the fuck do you need to wear the damn mask after you've been vacinated?
 
Medical personnel have been wearing masks since the Civil War. The reason is obvious. There is so much shit circulating (and recirculating) on a plane that's a good idea to wear a mask on a good day. On the other hand if you don't want to wear one the government shouldn't point a gun at you.
 
Technical B. S. aside, if Covid is known to be transmitted by mouth and nasal discharge why wouldn't masks be effective? Are they going to tell us that condoms aren't effective in the spread of V.D.?

Well, if the condoms were made out of cheesecloth, they would be as effective as a cloth mask.
 
Medical personnel have been wearing masks since the Civil War. The reason is obvious. There is so much shit circulating (and recirculating) on a plane that's a good idea to wear a mask on a good day. On the other hand if you don't want to wear one the government shouldn't point a gun at you.

You really should spend ten or fifteen minutes learning the difference between bacteria and a virus. That knowledge would serve you well.

Dr. Fauci Masks don’t work.


###

Europe's Top Health Officials Say Masks Aren't Helpful in Beating COVID-19
The top medical experts in the world can’t decide if masks are helpful in reducing the spread of COVID-19 or just make things worse.
Thursday, August 6, 2020

Denmark boasts one of the lowest COVID-19 death rates in the world. As of August 4, the Danes have suffered 616 COVID-19 deaths, according to figures from Johns Hopkins University.

That’s less than one-third of the number of Danes who die from pneumonia or influenza in a given year.

Despite this success, Danish leaders recently found themselves on the defensive. The reason is that Danes aren’t wearing face masks, and local authorities for the most part aren’t even recommending them.


###

CDC Study Finds Overwhelming Majority Of People Getting Coronavirus Wore Masks
OCTOBER 12, 2020 By Jordan Davidson

A Centers for Disease Control report released in September shows that masks and face coverings are not effective in preventing the spread of COVID-19, even for those people who consistently wear them.

A study conducted in the United States in July found that when they compared 154 “case-patients,” who tested positive for COVID-19, to a control group of 160 participants from health care facilities who were symptomatic but tested negative, over 70 percent of the case patients were contaminated with the virus and fell ill despite “always” wearing a mask.


###

Difference between a virus and bacteria.


###

Stanford study quietly published at NIH.gov proves face masks are absolutely worthless against Covid

The diapers most of us are wearing on our face most of the time apparently have no effect at stopping Covid-19. This explains a lot.

by JD Rucker

April 17, 2021

According to the current knowledge, the virus SARS-CoV-2 has a diameter of 60 nm to 140 nm [nanometers (billionth of a meter)] [16], [17], while medical and non-medical facemasks’ thread diameter ranges from 55 µm to 440 µm [micrometers (one millionth of a meter), which is more than 1000 times larger [25]. Due to the difference in sizes between SARS-CoV-2 diameter and facemasks thread diameter (the virus is 1000 times smaller), SARS-CoV-2 can easily pass through any facemask.”

Stanford study quietly published at NIH.gov proves face masks are absolutely worthless against Covid
 
We don't really need some convoluted spin dried opinion by a bunch of college types to promote incredible propaganda that face masks don't work against airborne disease when it's obvious that masks really work. The problem is when the government assumes the right to incarcerate people who congregate and socialize without masks.
 
We don't really need some convoluted spin dried opinion by a bunch of college types to promote incredible propaganda that face masks don't work against airborne disease when it's obvious that masks really work. The problem is when the government assumes the right to incarcerate people who congregate and socialize without masks.

The subject is COVID-19, NOT just ANY airborne disease.

i-5JQXNQC-X2.jpg
 
We don't really need some convoluted spin dried opinion by a bunch of college types to promote incredible propaganda that face masks don't work against airborne disease when it's obvious that masks really work. The problem is when the government assumes the right to incarcerate people who congregate and socialize without masks.

The subject is COVID-19, NOT just ANY airborne disease.

i-5JQXNQC-X2.jpg
It doesn't matter how it got here or how mostly democrat administrations dismissed it at first. Covid seems to be a garden variety airborne disease and face masks are effective in all airborne diseases. Common sense will tell you that. The issue is political and centers about whether the government has the power to incarcerate people for the crime of congregating or socializing without a mask. For some reason the case has not reached the Supreme Court.
 
In quotes below is the part of the article that I dispute. It goes contrary to every medical website there is. Every one of them. You can get the anti-science, anti-vaxxers to give you thumbs-up until the cows come home but every object, halfway scientific literate person knows that the article in your link is a shame. I actually submitted links to several actual, valid medical websites. You did not look at them, did you? They are the real deal, not this silliness you posted.

"Introduction

Facemasks are part of non-pharmaceutical interventions providing some breathing barrier to the mouth and nose that have been utilized for reducing the transmission of respiratory pathogens [1]. Facemasks can be medical and non-medical, where two types of the medical masks primarily used by healthcare workers [1], [2]. The first type is National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask, a filtering face-piece respirator, and the second type is a surgical mask [1]. The designed and intended uses of N95 and surgical masks are different in the type of protection they potentially provide. The N95s are typically composed of electret filter media and seal tightly to the face of the wearer, whereas surgical masks are generally loose fitting and may or may not contain electret-filtering media. The N95s are designed to reduce the wearer’s inhalation exposure to infectious and harmful particles from the environment such as during extermination of insects. In contrast, surgical masks are designed to provide a barrier protection against splash, spittle and other body fluids to spray from the wearer (such as surgeon) to the sterile environment (patient during operation) for reducing the risk of contamination [1].

The third type of facemasks are the non-medical cloth or fabric masks. The non-medical facemasks are made from a variety of woven and non-woven materials such as Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk. Although non-medical cloth or fabric facemasks are neither a medical device nor personal protective equipment, some standards have been developed by the French Standardization Association (AFNOR Group) to define a minimum performance for filtration and breathability capacity [2]. The current article reviews the scientific evidences with respect to safety and efficacy of wearing facemasks, describing the physiological and psychological effects and the potential long-term consequences on health.

MyPillow NOQ
Hypothesis
On January 30, 2020, the World Health Organization (WHO) announced a global public health emergency of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causing illness of coronavirus disease-2019 (COVID-19) [3]. As of October 1, 2020, worldwide 34,166,633 cases were reported and 1,018,876 have died with virus diagnosis. Interestingly, 99% of the detected cases with SARS-CoV-2 are asymptomatic or have mild condition, which contradicts with the virus name (severe acute respiratory syndrome-coronavirus-2) [4]. Although infection fatality rate (number of death cases divided by number of reported cases) initially seems quite high 0.029 (2.9%) [4], this overestimation related to limited number of COVID-19 tests performed which biases towards higher rates. Given the fact that asymptomatic or minimally symptomatic cases is several times higher than the number of reported cases, the case fatality rate is considerably less than 1% [5]. This was confirmed by the head of National Institute of Allergy and Infectious Diseases from US stating, “the overall clinical consequences of COVID-19 are similar to those of severe seasonal influenza” [5], having a case fatality rate of approximately 0.1% [5], [6], [7], [8]. In addition, data from hospitalized patients with COVID-19 and general public indicate that the majority of deaths were among older and chronically ill individuals, supporting the possibility that the virus may exacerbates existing conditions but rarely causes death by itself [9], [10]. SARS-CoV-2 primarily affects respiratory system and can cause complications such as acute respiratory distress syndrome (ARDS), respiratory failure and death [3], [9]. It is not clear however, what the scientific and clinical basis for wearing facemasks as protective strategy, given the fact that facemasks restrict breathing, causing hypoxemia and hypercapnia and increase the risk for respiratory complications, self-contamination and exacerbation of existing chronic conditions [2], [11], [12], [13], [14].

Of note, hyperoxia or oxygen supplementation (breathing air with high partial O2 pressures that above the sea levels) has been well established as therapeutic and curative practice for variety acute and chronic conditions including respiratory complications [11], [15]. It fact, the current standard of care practice for treating hospitalized patients with COVID-19 is breathing 100% oxygen [16], [17], [18]. Although several countries mandated wearing facemask in health care settings and public areas, scientific evidences are lacking supporting their efficacy for reducing morbidity or mortality associated with infectious or viral diseases [2], [14], [19]. Therefore, it has been hypothesized: 1) the practice of wearing facemasks has compromised safety and efficacy profile, 2) Both medical and non-medical facemasks are ineffective to reduce human-to-human transmission and infectivity of SARS-CoV-2 and COVID-19, 3) Wearing facemasks has adverse physiological and psychological effects, 4) Long-term consequences of wearing facemasks on health are detrimental.

Evolution of hypothesis
Breathing Physiology
Breathing is one of the most important physiological functions to sustain life and health. Human body requires a continuous and adequate oxygen (O2) supply to all organs and cells for normal function and survival. Breathing is also an essential process for removing metabolic byproducts [carbon dioxide (CO2)] occurring during cell respiration [12], [13]. It is well established that acute significant deficit in O2 (hypoxemia) and increased levels of CO2 (hypercapnia) even for few minutes can be severely harmful and lethal, while chronic hypoxemia and hypercapnia cause health deterioration, exacerbation of existing conditions, morbidity and ultimately mortality [11], [20], [21], [22]. Emergency medicine demonstrates that 5–6 min of severe hypoxemia during cardiac arrest will cause brain death with extremely poor survival rates [20], [21], [22], [23]. On the other hand, chronic mild or moderate hypoxemia and hypercapnia such as from wearing facemasks resulting in shifting to higher contribution of anaerobic energy metabolism, decrease in pH levels and increase in cells and blood acidity, toxicity, oxidative stress, chronic inflammation, immunosuppression and health deterioration [24], [11], [12], [13].

Efficacy of facemasks
The physical properties of medical and non-medical facemasks suggest that facemasks are ineffective to block viral particles due to their difference in scales [16], [17], [25]. According to the current knowledge, the virus SARS-CoV-2 has a diameter of 60 nm to 140 nm [nanometers (billionth of a meter)] [16], [17], while medical and non-medical facemasks’ thread diameter ranges from 55 µm to 440 µm [micrometers (one millionth of a meter), which is more than 1000 times larger [25]. Due to the difference in sizes between SARS-CoV-2 diameter and facemasks thread diameter (the virus is 1000 times smaller), SARS-CoV-2 can easily pass through any facemask [25]. In addition, the efficiency filtration rate of facemasks is poor, ranging from 0.7% in non-surgical, cotton-gauze woven mask to 26% in cotton sweeter material [2]. With respect to surgical and N95 medical facemasks, the efficiency filtration rate falls to 15% and 58%, respectively when even small gap between the mask and the face exists [25].

Learn more about RevenueStripe...

Clinical scientific evidence challenges further the efficacy of facemasks to block human-to-human transmission or infectivity. A randomized controlled trial (RCT) of 246 participants [123 (50%) symptomatic)] who were allocated to either wearing or not wearing surgical facemask, assessing viruses transmission including coronavirus [26]. The results of this study showed that among symptomatic individuals (those with fever, cough, sore throat, runny nose ect…) there was no difference between wearing and not wearing facemask for coronavirus droplets transmission of particles of >5 µm. Among asymptomatic individuals, there was no droplets or aerosols coronavirus detected from any participant with or without the mask, suggesting that asymptomatic individuals do not transmit or infect other people [26]. This was further supported by a study on infectivity where 445 asymptomatic individuals were exposed to asymptomatic SARS-CoV-2 carrier (been positive for SARS-CoV-2) using close contact (shared quarantine space) for a median of 4 to 5 days. The study found that none of the 445 individuals was infected with SARS-CoV-2 confirmed by real-time reverse transcription polymerase [27].

A meta-analysis among health care workers found that compared to no masks, surgical mask and N95 respirators were not effective against transmission of viral infections or influenza-like illness based on six RCTs [28]. Using separate analysis of 23 observational studies, this meta-analysis found no protective effect of medical mask or N95 respirators against SARS virus [28]. A recent systematic review of 39 studies including 33,867 participants in community settings (self-report illness), found no difference between N95 respirators versus surgical masks and surgical mask versus no masks in the risk for developing influenza or influenza-like illness, suggesting their ineffectiveness of blocking viral transmissions in community settings [29].

Another meta-analysis of 44 non-RCT studies (n = 25,697 participants) examining the potential risk reduction of facemasks against SARS, middle east respiratory syndrome (MERS) and COVID-19 transmissions [30]. The meta-analysis included four specific studies on COVID-19 transmission (5,929 participants, primarily health-care workers used N95 masks). Although the overall findings showed reduced risk of virus transmission with facemasks, the analysis had severe limitations to draw conclusions. One of the four COVID-19 studies had zero infected cases in both arms, and was excluded from meta-analytic calculation. Other two COVID-19 studies had unadjusted models, and were also excluded from the overall analysis. The meta-analytic results were based on only one COVID-19, one MERS and 8 SARS studies, resulting in high selection bias of the studies and contamination of the results between different viruses. Based on four COVID-19 studies, the meta-analysis failed to demonstrate risk reduction of facemasks for COVID-19 transmission, where the authors reported that the results of meta-analysis have low certainty and are inconclusive [30].

In early publication the WHO stated that “facemasks are not required, as no evidence is available on its usefulness to protect non-sick persons” [14]. In the same publication, the WHO declared that “cloth (e.g. cotton or gauze) masks are not recommended under any circumstance” [14]. Conversely, in later publication the WHO stated that the usage of fabric-made facemasks (Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk) is a general community practice for “preventing the infected wearer transmitting the virus to others and/or to offer protection to the healthy wearer against infection (prevention)” [2]. The same publication further conflicted itself by stating that due to the lower filtration, breathability and overall performance of fabric facemasks, the usage of woven fabric mask such as cloth, and/or non-woven fabrics, should only be considered for infected persons and not for prevention practice in asymptomatic individuals [2]. The Central for Disease Control and Prevention (CDC) made similar recommendation, stating that only symptomatic persons should consider wearing facemask, while for asymptomatic individuals this practice is not recommended [31]. Consistent with the CDC, clinical scientists from Departments of Infectious Diseases and Microbiology in Australia counsel against facemasks usage for health-care workers, arguing that there is no justification for such practice while normal caring relationship between patients and medical staff could be compromised [32]. Moreover, the WHO repeatedly announced that “at present, there is no direct evidence (from studies on COVID-19) on the effectiveness face masking of healthy people in the community to prevent infection of respiratory viruses, including COVID-19”[2]. Despite these controversies, the potential harms and risks of wearing facemasks were clearly acknowledged. These including self-contamination due to hand practice or non-replaced when the mask is wet, soiled or damaged, development of facial skin lesions, irritant dermatitis or worsening acne and psychological discomfort. Vulnerable populations such as people with mental health disorders, developmental disabilities, hearing problems, those living in hot and humid environments, children and patients with respiratory conditions are at significant health risk for complications and harm [2].







0:47 / 1:15:50

Physiological effects of wearing facemasks
Wearing facemask mechanically restricts breathing by increasing the resistance of air movement during both inhalation and exhalation process [12], [13]. Although, intermittent (several times a week) and repetitive (10–15 breaths for 2–4 sets) increase in respiration resistance may be adaptive for strengthening respiratory muscles [33], [34], prolonged and continues effect of wearing facemask is maladaptive and could be detrimental for health [11], [12], [13]. In normal conditions at the sea level, air contains 20.93% O2 and 0.03% CO2, providing partial pressures of 100 mmHg and 40 mmHg for these gases in the arterial blood, respectively. These gas concentrations significantly altered when breathing occurs through facemask. A trapped air remaining between the mouth, nose and the facemask is rebreathed repeatedly in and out of the body, containing low O2 and high CO2 concentrations, causing hypoxemia and hypercapnia [35], [36], [11], [12], [13]. Severe hypoxemia may also provoke cardiopulmonary and neurological complications and is considered an important clinical sign in cardiopulmonary medicine [37], [38], [39], [40], [41], [42]. Low oxygen content in the arterial blood can cause myocardial ischemia, serious arrhythmias, right or left ventricular dysfunction, dizziness, hypotension, syncope and pulmonary hypertension [43]. Chronic low-grade hypoxemia and hypercapnia as result of using facemask can cause exacerbation of existing cardiopulmonary, metabolic, vascular and neurological conditions [37], [38], [39], [40], [41], [42]. Table 1 summarizes the physiological, psychological effects of wearing facemask and their potential long-term consequences for health.

Table 1. Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences.

Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences

In addition to hypoxia and hypercapnia, breathing through facemask residues bacterial and germs components on the inner and outside layer of the facemask. These toxic components are repeatedly rebreathed back into the body, causing self-contamination. Breathing through facemasks also increases temperature and humidity in the space between the mouth and the mask, resulting a release of toxic particles from the mask’s materials [1], [2], [19], [26], [35], [36]. A systematic literature review estimated that aerosol contamination levels of facemasks including 13 to 202,549 different viruses [1]. Rebreathing contaminated air with high bacterial and toxic particle concentrations along with low O2 and high CO2 levels continuously challenge the body homeostasis, causing self-toxicity and immunosuppression [1], [2], [19], [26], [35], [36].

A study on 39 patients with renal disease found that wearing N95 facemask during hemodialysis significantly reduced arterial partial oxygen pressure (from PaO2 101.7 to 92.7 mm Hg), increased respiratory rate (from 16.8 to 18.8 breaths/min), and increased the occurrence of chest discomfort and respiratory distress [35]. Respiratory Protection Standards from Occupational Safety and Health Administration, US Department of Labor states that breathing air with O2 concentration below 19.5% is considered oxygen-deficiency, causing physiological and health adverse effects. These include increased breathing frequency, accelerated heartrate and cognitive impairments related to thinking and coordination [36]. A chronic state of mild hypoxia and hypercapnia has been shown as primarily mechanism for developing cognitive dysfunction based on animal studies and studies in patients with chronic obstructive pulmonary disease [44].

The adverse physiological effects were confirmed in a study of 53 surgeons where surgical facemask were used during a major operation. After 60 min of facemask wearing the oxygen saturation dropped by more than 1% and heart rate increased by approximately five beats/min [45]. Another study among 158 health-care workers using protective personal equipment primarily N95 facemasks reported that 81% (128 workers) developed new headaches during their work shifts as these become mandatory due to COVID-19 outbreak. For those who used the N95 facemask greater than 4 h per day, the likelihood for developing a headache during the work shift was approximately four times higher [Odds ratio = 3.91, 95% CI (1.35–11.31) p = 0.012], while 82.2% of the N95 wearers developed the headache already within ≤10 to 50 min [46].

With respect to cloth facemask, a RCT using four weeks follow up compared the effect of cloth facemask to medical masks and to no masks on the incidence of clinical respiratory illness, influenza-like illness and laboratory-confirmed respiratory virus infections among 1607 participants from 14 hospitals [19]. The results showed that there were no difference between wearing cloth masks, medical masks and no masks for incidence of clinical respiratory illness and laboratory-confirmed respiratory virus infections. However, a large harmful effect with more than 13 times higher risk [Relative Risk = 13.25 95% CI (1.74 to 100.97) was observed for influenza-like illness among those who were wearing cloth masks [19]. The study concluded that cloth masks have significant health and safety issues including moisture retention, reuse, poor filtration and increased risk for infection, providing recommendation against the use of cloth masks [19].

Psychological effects of wearing facemasks
Psychologically, wearing facemask fundamentally has negative effects on the wearer and the nearby person. Basic human-to-human connectivity through face expression is compromised and self-identity is somewhat eliminated [47], [48], [49]. These dehumanizing movements partially delete the uniqueness and individuality of person who wearing the facemask as well as the connected person [49]. Social connections and relationships are basic human needs, which innately inherited in all people, whereas reduced human-to-human connections are associated with poor mental and physical health [50], [51]. Despite escalation in technology and globalization that would presumably foster social connections, scientific findings show that people are becoming increasingly more socially isolated, and the prevalence of loneliness is increasing in last few decades [50], [52]. Poor social connections are closely related to isolation and loneliness, considered significant health related risk factors [50], [51], [52], [53].

A meta-analysis of 91 studies of about 400,000 people showed a 13% increased morality risk among people with low compare to high contact frequency [53]. Another meta-analysis of 148 prospective studies (308,849 participants) found that poor social relationships was associated with 50% increased mortality risk. People who were socially isolated or fell lonely had 45% and 40% increased mortality risk, respectively. These findings were consistent across ages, sex, initial health status, cause of death and follow-up periods [52]. Importantly, the increased risk for mortality was found comparable to smoking and exceeding well-established risk factors such as obesity and physical inactivity [52]. An umbrella review of 40 systematic reviews including 10 meta-analyses demonstrated that compromised social relationships were associated with increased risk of all-cause mortality, depression, anxiety suicide, cancer and overall physical illness [51].

As described earlier, wearing facemasks causing hypoxic and hypercapnic state that constantly challenges the normal homeostasis, and activates “fight or flight” stress response, an important survival mechanism in the human body [11], [12], [13]. The acute stress response includes activation of nervous, endocrine, cardiovascular, and the immune systems [47], [54], [55], [56]. These include activation of the limbic part of the brain, release stress hormones (adrenalin, neuro-adrenalin and cortisol), changes in blood flow distribution (vasodilation of peripheral blood vessels and vasoconstriction of visceral blood vessels) and activation of the immune system response (secretion of macrophages and natural killer cells) [47], [48]. Encountering people who wearing facemasks activates innate stress-fear emotion, which is fundamental to all humans in danger or life threating situations, such as death or unknown, unpredictable outcome. While acute stress response (seconds to minutes) is adaptive reaction to challenges and part of the survival mechanism, chronic and prolonged state of stress-fear is maladaptive and has detrimental effects on physical and mental health. The repeatedly or continuously activated stress-fear response causes the body to operate on survival mode, having sustain increase in blood pressure, pro-inflammatory state and immunosuppression [47], [48].

Long-Term health consequences of wearing facemasks
Long-term practice of wearing facemasks has strong potential for devastating health consequences. Prolonged hypoxic-hypercapnic state compromises normal physiological and psychological balance, deteriorating health and promotes the developing and progression of existing chronic diseases [23], [38], [39], [43], [47], [48], [57], [11], [12], [13]. For instance, ischemic heart disease caused by hypoxic damage to the myocardium is the most common form of cardiovascular disease and is a number one cause of death worldwide (44% of all non-communicable diseases) with 17.9 million deaths occurred in 2016 [57]. Hypoxia also playing an important role in cancer burden [58]. Cellular hypoxia has strong mechanistic feature in promoting cancer initiation, progression, metastasis, predicting clinical outcomes and usually presents a poorer survival in patients with cancer. Most solid tumors present some degree of hypoxia, which is independent predictor of more aggressive disease, resistance to cancer therapies and poorer clinical outcomes [59], [60]. Worth note, cancer is one of the leading causes of death worldwide, with an estimate of more than 18 million new diagnosed cases and 9.6 million cancer-related deaths occurred in 2018 [61].

With respect to mental health, global estimates showing that COVID-19 will cause a catastrophe due to collateral psychological damage such as quarantine, lockdowns, unemployment, economic collapse, social isolation, violence and suicides [62], [63], [64]. Chronic stress along with hypoxic and hypercapnic conditions knocks the body out of balance, and can cause headaches, fatigue, stomach issues, muscle tension, mood disturbances, insomnia and accelerated aging [47], [48], [65], [66], [67]. This state suppressing the immune system to protect the body from viruses and bacteria, decreasing cognitive function, promoting the developing and exacerbating the major health issues including hypertension, cardiovascular disease, diabetes, cancer, Alzheimer disease, rising anxiety and depression states, causes social isolation and loneliness and increasing the risk for prematurely mortality [47], [48], [51], [56], [66].

Conclusion
The existing scientific evidences challenge the safety and efficacy of wearing facemask as preventive intervention for COVID-19. The data suggest that both medical and non-medical facemasks are ineffective to block human-to-human transmission of viral and infectious disease such SARS-CoV-2 and COVID-19, supporting against the usage of facemasks. Wearing facemasks has been demonstrated to have substantial adverse physiological and psychological effects. These include hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, activation of fear and stress response, rise in stress hormones, immunosuppression, fatigue, headaches, decline in cognitive performance, predisposition for viral and infectious illnesses, chronic stress, anxiety and depression. Long-term consequences of wearing facemask can cause health deterioration, developing and progression of chronic diseases and premature death. Governments, policy makers and health organizations should utilize prosper and scientific evidence-based approach with respect to wearing facemasks, when the latter is considered as preventive intervention for public health."
You still failed to isolate what exactly you dispute from the article. Posting the entire article does not even demonstrate that you even read and understood it. If you want to win this, you will need to post something from that article that you dispute, and then explain how the part you quoted is flawed or inaccurate. Just so you know, your next post will once again be something besides a quote of something you dispute from the article.
 
Covid seems to be a garden variety airborne disease and face masks are effective in all airborne diseases. Common sense will tell you that.

If you want to use common sense to make an assumption about the effectiveness of masks in regard to covid, you should at least have all the facts. There isn't anybody who believes masks are effective against covid who actually knows the size of the holes or pores in masks compared to the coronavirus or droplets that are 1000 times smaller. How could anybody use common sense to assume that something can be filtered out using holes that are 1000 times larger than what is being filtered? The only way to assume that masks work is if you buy the propaganda.
 
In quotes below is the part of the article that I dispute. It goes contrary to every medical website there is. Every one of them. You can get the anti-science, anti-vaxxers to give you thumbs-up until the cows come home but every object, halfway scientific literate person knows that the article in your link is a shame. I actually submitted links to several actual, valid medical websites. You did not look at them, did you? They are the real deal, not this silliness you posted.

"Introduction

Facemasks are part of non-pharmaceutical interventions providing some breathing barrier to the mouth and nose that have been utilized for reducing the transmission of respiratory pathogens [1]. Facemasks can be medical and non-medical, where two types of the medical masks primarily used by healthcare workers [1], [2]. The first type is National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask, a filtering face-piece respirator, and the second type is a surgical mask [1]. The designed and intended uses of N95 and surgical masks are different in the type of protection they potentially provide. The N95s are typically composed of electret filter media and seal tightly to the face of the wearer, whereas surgical masks are generally loose fitting and may or may not contain electret-filtering media. The N95s are designed to reduce the wearer’s inhalation exposure to infectious and harmful particles from the environment such as during extermination of insects. In contrast, surgical masks are designed to provide a barrier protection against splash, spittle and other body fluids to spray from the wearer (such as surgeon) to the sterile environment (patient during operation) for reducing the risk of contamination [1].

The third type of facemasks are the non-medical cloth or fabric masks. The non-medical facemasks are made from a variety of woven and non-woven materials such as Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk. Although non-medical cloth or fabric facemasks are neither a medical device nor personal protective equipment, some standards have been developed by the French Standardization Association (AFNOR Group) to define a minimum performance for filtration and breathability capacity [2]. The current article reviews the scientific evidences with respect to safety and efficacy of wearing facemasks, describing the physiological and psychological effects and the potential long-term consequences on health.

MyPillow NOQ
Hypothesis
On January 30, 2020, the World Health Organization (WHO) announced a global public health emergency of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causing illness of coronavirus disease-2019 (COVID-19) [3]. As of October 1, 2020, worldwide 34,166,633 cases were reported and 1,018,876 have died with virus diagnosis. Interestingly, 99% of the detected cases with SARS-CoV-2 are asymptomatic or have mild condition, which contradicts with the virus name (severe acute respiratory syndrome-coronavirus-2) [4]. Although infection fatality rate (number of death cases divided by number of reported cases) initially seems quite high 0.029 (2.9%) [4], this overestimation related to limited number of COVID-19 tests performed which biases towards higher rates. Given the fact that asymptomatic or minimally symptomatic cases is several times higher than the number of reported cases, the case fatality rate is considerably less than 1% [5]. This was confirmed by the head of National Institute of Allergy and Infectious Diseases from US stating, “the overall clinical consequences of COVID-19 are similar to those of severe seasonal influenza” [5], having a case fatality rate of approximately 0.1% [5], [6], [7], [8]. In addition, data from hospitalized patients with COVID-19 and general public indicate that the majority of deaths were among older and chronically ill individuals, supporting the possibility that the virus may exacerbates existing conditions but rarely causes death by itself [9], [10]. SARS-CoV-2 primarily affects respiratory system and can cause complications such as acute respiratory distress syndrome (ARDS), respiratory failure and death [3], [9]. It is not clear however, what the scientific and clinical basis for wearing facemasks as protective strategy, given the fact that facemasks restrict breathing, causing hypoxemia and hypercapnia and increase the risk for respiratory complications, self-contamination and exacerbation of existing chronic conditions [2], [11], [12], [13], [14].

Of note, hyperoxia or oxygen supplementation (breathing air with high partial O2 pressures that above the sea levels) has been well established as therapeutic and curative practice for variety acute and chronic conditions including respiratory complications [11], [15]. It fact, the current standard of care practice for treating hospitalized patients with COVID-19 is breathing 100% oxygen [16], [17], [18]. Although several countries mandated wearing facemask in health care settings and public areas, scientific evidences are lacking supporting their efficacy for reducing morbidity or mortality associated with infectious or viral diseases [2], [14], [19]. Therefore, it has been hypothesized: 1) the practice of wearing facemasks has compromised safety and efficacy profile, 2) Both medical and non-medical facemasks are ineffective to reduce human-to-human transmission and infectivity of SARS-CoV-2 and COVID-19, 3) Wearing facemasks has adverse physiological and psychological effects, 4) Long-term consequences of wearing facemasks on health are detrimental.

Evolution of hypothesis
Breathing Physiology
Breathing is one of the most important physiological functions to sustain life and health. Human body requires a continuous and adequate oxygen (O2) supply to all organs and cells for normal function and survival. Breathing is also an essential process for removing metabolic byproducts [carbon dioxide (CO2)] occurring during cell respiration [12], [13]. It is well established that acute significant deficit in O2 (hypoxemia) and increased levels of CO2 (hypercapnia) even for few minutes can be severely harmful and lethal, while chronic hypoxemia and hypercapnia cause health deterioration, exacerbation of existing conditions, morbidity and ultimately mortality [11], [20], [21], [22]. Emergency medicine demonstrates that 5–6 min of severe hypoxemia during cardiac arrest will cause brain death with extremely poor survival rates [20], [21], [22], [23]. On the other hand, chronic mild or moderate hypoxemia and hypercapnia such as from wearing facemasks resulting in shifting to higher contribution of anaerobic energy metabolism, decrease in pH levels and increase in cells and blood acidity, toxicity, oxidative stress, chronic inflammation, immunosuppression and health deterioration [24], [11], [12], [13].

Efficacy of facemasks
The physical properties of medical and non-medical facemasks suggest that facemasks are ineffective to block viral particles due to their difference in scales [16], [17], [25]. According to the current knowledge, the virus SARS-CoV-2 has a diameter of 60 nm to 140 nm [nanometers (billionth of a meter)] [16], [17], while medical and non-medical facemasks’ thread diameter ranges from 55 µm to 440 µm [micrometers (one millionth of a meter), which is more than 1000 times larger [25]. Due to the difference in sizes between SARS-CoV-2 diameter and facemasks thread diameter (the virus is 1000 times smaller), SARS-CoV-2 can easily pass through any facemask [25]. In addition, the efficiency filtration rate of facemasks is poor, ranging from 0.7% in non-surgical, cotton-gauze woven mask to 26% in cotton sweeter material [2]. With respect to surgical and N95 medical facemasks, the efficiency filtration rate falls to 15% and 58%, respectively when even small gap between the mask and the face exists [25].

Learn more about RevenueStripe...

Clinical scientific evidence challenges further the efficacy of facemasks to block human-to-human transmission or infectivity. A randomized controlled trial (RCT) of 246 participants [123 (50%) symptomatic)] who were allocated to either wearing or not wearing surgical facemask, assessing viruses transmission including coronavirus [26]. The results of this study showed that among symptomatic individuals (those with fever, cough, sore throat, runny nose ect…) there was no difference between wearing and not wearing facemask for coronavirus droplets transmission of particles of >5 µm. Among asymptomatic individuals, there was no droplets or aerosols coronavirus detected from any participant with or without the mask, suggesting that asymptomatic individuals do not transmit or infect other people [26]. This was further supported by a study on infectivity where 445 asymptomatic individuals were exposed to asymptomatic SARS-CoV-2 carrier (been positive for SARS-CoV-2) using close contact (shared quarantine space) for a median of 4 to 5 days. The study found that none of the 445 individuals was infected with SARS-CoV-2 confirmed by real-time reverse transcription polymerase [27].

A meta-analysis among health care workers found that compared to no masks, surgical mask and N95 respirators were not effective against transmission of viral infections or influenza-like illness based on six RCTs [28]. Using separate analysis of 23 observational studies, this meta-analysis found no protective effect of medical mask or N95 respirators against SARS virus [28]. A recent systematic review of 39 studies including 33,867 participants in community settings (self-report illness), found no difference between N95 respirators versus surgical masks and surgical mask versus no masks in the risk for developing influenza or influenza-like illness, suggesting their ineffectiveness of blocking viral transmissions in community settings [29].

Another meta-analysis of 44 non-RCT studies (n = 25,697 participants) examining the potential risk reduction of facemasks against SARS, middle east respiratory syndrome (MERS) and COVID-19 transmissions [30]. The meta-analysis included four specific studies on COVID-19 transmission (5,929 participants, primarily health-care workers used N95 masks). Although the overall findings showed reduced risk of virus transmission with facemasks, the analysis had severe limitations to draw conclusions. One of the four COVID-19 studies had zero infected cases in both arms, and was excluded from meta-analytic calculation. Other two COVID-19 studies had unadjusted models, and were also excluded from the overall analysis. The meta-analytic results were based on only one COVID-19, one MERS and 8 SARS studies, resulting in high selection bias of the studies and contamination of the results between different viruses. Based on four COVID-19 studies, the meta-analysis failed to demonstrate risk reduction of facemasks for COVID-19 transmission, where the authors reported that the results of meta-analysis have low certainty and are inconclusive [30].

In early publication the WHO stated that “facemasks are not required, as no evidence is available on its usefulness to protect non-sick persons” [14]. In the same publication, the WHO declared that “cloth (e.g. cotton or gauze) masks are not recommended under any circumstance” [14]. Conversely, in later publication the WHO stated that the usage of fabric-made facemasks (Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk) is a general community practice for “preventing the infected wearer transmitting the virus to others and/or to offer protection to the healthy wearer against infection (prevention)” [2]. The same publication further conflicted itself by stating that due to the lower filtration, breathability and overall performance of fabric facemasks, the usage of woven fabric mask such as cloth, and/or non-woven fabrics, should only be considered for infected persons and not for prevention practice in asymptomatic individuals [2]. The Central for Disease Control and Prevention (CDC) made similar recommendation, stating that only symptomatic persons should consider wearing facemask, while for asymptomatic individuals this practice is not recommended [31]. Consistent with the CDC, clinical scientists from Departments of Infectious Diseases and Microbiology in Australia counsel against facemasks usage for health-care workers, arguing that there is no justification for such practice while normal caring relationship between patients and medical staff could be compromised [32]. Moreover, the WHO repeatedly announced that “at present, there is no direct evidence (from studies on COVID-19) on the effectiveness face masking of healthy people in the community to prevent infection of respiratory viruses, including COVID-19”[2]. Despite these controversies, the potential harms and risks of wearing facemasks were clearly acknowledged. These including self-contamination due to hand practice or non-replaced when the mask is wet, soiled or damaged, development of facial skin lesions, irritant dermatitis or worsening acne and psychological discomfort. Vulnerable populations such as people with mental health disorders, developmental disabilities, hearing problems, those living in hot and humid environments, children and patients with respiratory conditions are at significant health risk for complications and harm [2].







0:47 / 1:15:50

Physiological effects of wearing facemasks
Wearing facemask mechanically restricts breathing by increasing the resistance of air movement during both inhalation and exhalation process [12], [13]. Although, intermittent (several times a week) and repetitive (10–15 breaths for 2–4 sets) increase in respiration resistance may be adaptive for strengthening respiratory muscles [33], [34], prolonged and continues effect of wearing facemask is maladaptive and could be detrimental for health [11], [12], [13]. In normal conditions at the sea level, air contains 20.93% O2 and 0.03% CO2, providing partial pressures of 100 mmHg and 40 mmHg for these gases in the arterial blood, respectively. These gas concentrations significantly altered when breathing occurs through facemask. A trapped air remaining between the mouth, nose and the facemask is rebreathed repeatedly in and out of the body, containing low O2 and high CO2 concentrations, causing hypoxemia and hypercapnia [35], [36], [11], [12], [13]. Severe hypoxemia may also provoke cardiopulmonary and neurological complications and is considered an important clinical sign in cardiopulmonary medicine [37], [38], [39], [40], [41], [42]. Low oxygen content in the arterial blood can cause myocardial ischemia, serious arrhythmias, right or left ventricular dysfunction, dizziness, hypotension, syncope and pulmonary hypertension [43]. Chronic low-grade hypoxemia and hypercapnia as result of using facemask can cause exacerbation of existing cardiopulmonary, metabolic, vascular and neurological conditions [37], [38], [39], [40], [41], [42]. Table 1 summarizes the physiological, psychological effects of wearing facemask and their potential long-term consequences for health.

Table 1. Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences.

Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences

In addition to hypoxia and hypercapnia, breathing through facemask residues bacterial and germs components on the inner and outside layer of the facemask. These toxic components are repeatedly rebreathed back into the body, causing self-contamination. Breathing through facemasks also increases temperature and humidity in the space between the mouth and the mask, resulting a release of toxic particles from the mask’s materials [1], [2], [19], [26], [35], [36]. A systematic literature review estimated that aerosol contamination levels of facemasks including 13 to 202,549 different viruses [1]. Rebreathing contaminated air with high bacterial and toxic particle concentrations along with low O2 and high CO2 levels continuously challenge the body homeostasis, causing self-toxicity and immunosuppression [1], [2], [19], [26], [35], [36].

A study on 39 patients with renal disease found that wearing N95 facemask during hemodialysis significantly reduced arterial partial oxygen pressure (from PaO2 101.7 to 92.7 mm Hg), increased respiratory rate (from 16.8 to 18.8 breaths/min), and increased the occurrence of chest discomfort and respiratory distress [35]. Respiratory Protection Standards from Occupational Safety and Health Administration, US Department of Labor states that breathing air with O2 concentration below 19.5% is considered oxygen-deficiency, causing physiological and health adverse effects. These include increased breathing frequency, accelerated heartrate and cognitive impairments related to thinking and coordination [36]. A chronic state of mild hypoxia and hypercapnia has been shown as primarily mechanism for developing cognitive dysfunction based on animal studies and studies in patients with chronic obstructive pulmonary disease [44].

The adverse physiological effects were confirmed in a study of 53 surgeons where surgical facemask were used during a major operation. After 60 min of facemask wearing the oxygen saturation dropped by more than 1% and heart rate increased by approximately five beats/min [45]. Another study among 158 health-care workers using protective personal equipment primarily N95 facemasks reported that 81% (128 workers) developed new headaches during their work shifts as these become mandatory due to COVID-19 outbreak. For those who used the N95 facemask greater than 4 h per day, the likelihood for developing a headache during the work shift was approximately four times higher [Odds ratio = 3.91, 95% CI (1.35–11.31) p = 0.012], while 82.2% of the N95 wearers developed the headache already within ≤10 to 50 min [46].

With respect to cloth facemask, a RCT using four weeks follow up compared the effect of cloth facemask to medical masks and to no masks on the incidence of clinical respiratory illness, influenza-like illness and laboratory-confirmed respiratory virus infections among 1607 participants from 14 hospitals [19]. The results showed that there were no difference between wearing cloth masks, medical masks and no masks for incidence of clinical respiratory illness and laboratory-confirmed respiratory virus infections. However, a large harmful effect with more than 13 times higher risk [Relative Risk = 13.25 95% CI (1.74 to 100.97) was observed for influenza-like illness among those who were wearing cloth masks [19]. The study concluded that cloth masks have significant health and safety issues including moisture retention, reuse, poor filtration and increased risk for infection, providing recommendation against the use of cloth masks [19].

Psychological effects of wearing facemasks
Psychologically, wearing facemask fundamentally has negative effects on the wearer and the nearby person. Basic human-to-human connectivity through face expression is compromised and self-identity is somewhat eliminated [47], [48], [49]. These dehumanizing movements partially delete the uniqueness and individuality of person who wearing the facemask as well as the connected person [49]. Social connections and relationships are basic human needs, which innately inherited in all people, whereas reduced human-to-human connections are associated with poor mental and physical health [50], [51]. Despite escalation in technology and globalization that would presumably foster social connections, scientific findings show that people are becoming increasingly more socially isolated, and the prevalence of loneliness is increasing in last few decades [50], [52]. Poor social connections are closely related to isolation and loneliness, considered significant health related risk factors [50], [51], [52], [53].

A meta-analysis of 91 studies of about 400,000 people showed a 13% increased morality risk among people with low compare to high contact frequency [53]. Another meta-analysis of 148 prospective studies (308,849 participants) found that poor social relationships was associated with 50% increased mortality risk. People who were socially isolated or fell lonely had 45% and 40% increased mortality risk, respectively. These findings were consistent across ages, sex, initial health status, cause of death and follow-up periods [52]. Importantly, the increased risk for mortality was found comparable to smoking and exceeding well-established risk factors such as obesity and physical inactivity [52]. An umbrella review of 40 systematic reviews including 10 meta-analyses demonstrated that compromised social relationships were associated with increased risk of all-cause mortality, depression, anxiety suicide, cancer and overall physical illness [51].

As described earlier, wearing facemasks causing hypoxic and hypercapnic state that constantly challenges the normal homeostasis, and activates “fight or flight” stress response, an important survival mechanism in the human body [11], [12], [13]. The acute stress response includes activation of nervous, endocrine, cardiovascular, and the immune systems [47], [54], [55], [56]. These include activation of the limbic part of the brain, release stress hormones (adrenalin, neuro-adrenalin and cortisol), changes in blood flow distribution (vasodilation of peripheral blood vessels and vasoconstriction of visceral blood vessels) and activation of the immune system response (secretion of macrophages and natural killer cells) [47], [48]. Encountering people who wearing facemasks activates innate stress-fear emotion, which is fundamental to all humans in danger or life threating situations, such as death or unknown, unpredictable outcome. While acute stress response (seconds to minutes) is adaptive reaction to challenges and part of the survival mechanism, chronic and prolonged state of stress-fear is maladaptive and has detrimental effects on physical and mental health. The repeatedly or continuously activated stress-fear response causes the body to operate on survival mode, having sustain increase in blood pressure, pro-inflammatory state and immunosuppression [47], [48].

Long-Term health consequences of wearing facemasks
Long-term practice of wearing facemasks has strong potential for devastating health consequences. Prolonged hypoxic-hypercapnic state compromises normal physiological and psychological balance, deteriorating health and promotes the developing and progression of existing chronic diseases [23], [38], [39], [43], [47], [48], [57], [11], [12], [13]. For instance, ischemic heart disease caused by hypoxic damage to the myocardium is the most common form of cardiovascular disease and is a number one cause of death worldwide (44% of all non-communicable diseases) with 17.9 million deaths occurred in 2016 [57]. Hypoxia also playing an important role in cancer burden [58]. Cellular hypoxia has strong mechanistic feature in promoting cancer initiation, progression, metastasis, predicting clinical outcomes and usually presents a poorer survival in patients with cancer. Most solid tumors present some degree of hypoxia, which is independent predictor of more aggressive disease, resistance to cancer therapies and poorer clinical outcomes [59], [60]. Worth note, cancer is one of the leading causes of death worldwide, with an estimate of more than 18 million new diagnosed cases and 9.6 million cancer-related deaths occurred in 2018 [61].

With respect to mental health, global estimates showing that COVID-19 will cause a catastrophe due to collateral psychological damage such as quarantine, lockdowns, unemployment, economic collapse, social isolation, violence and suicides [62], [63], [64]. Chronic stress along with hypoxic and hypercapnic conditions knocks the body out of balance, and can cause headaches, fatigue, stomach issues, muscle tension, mood disturbances, insomnia and accelerated aging [47], [48], [65], [66], [67]. This state suppressing the immune system to protect the body from viruses and bacteria, decreasing cognitive function, promoting the developing and exacerbating the major health issues including hypertension, cardiovascular disease, diabetes, cancer, Alzheimer disease, rising anxiety and depression states, causes social isolation and loneliness and increasing the risk for prematurely mortality [47], [48], [51], [56], [66].

Conclusion
The existing scientific evidences challenge the safety and efficacy of wearing facemask as preventive intervention for COVID-19. The data suggest that both medical and non-medical facemasks are ineffective to block human-to-human transmission of viral and infectious disease such SARS-CoV-2 and COVID-19, supporting against the usage of facemasks. Wearing facemasks has been demonstrated to have substantial adverse physiological and psychological effects. These include hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, activation of fear and stress response, rise in stress hormones, immunosuppression, fatigue, headaches, decline in cognitive performance, predisposition for viral and infectious illnesses, chronic stress, anxiety and depression. Long-term consequences of wearing facemask can cause health deterioration, developing and progression of chronic diseases and premature death. Governments, policy makers and health organizations should utilize prosper and scientific evidence-based approach with respect to wearing facemasks, when the latter is considered as preventive intervention for public health."
You still failed to isolate what exactly you dispute from the article. Posting the entire article does not even demonstrate that you even read and understood it. If you want to win this, you will need to post something from that article that you dispute, and then explain how the part you quoted is flawed or inaccurate. Just so you know, your next post will once again be something besides a quote of something you dispute from the article.
It's the whole article I object to. All of it is a shame. There is no picking out one part. It is all of it. Now, what do you have against the American Medical Association. or Johns Hopkins, or the Mayo Clinic? I've stated my position so, what do you have against actual, real medical websites?
 
If Covid is transmitted by mouth and nasal discharge why wouldn't masks be effective? Are they going to tell us that condoms aren't effective in the spread of V.D.?
What if there was a vaccination against pregnancy, but you still had to wear a condom?
What if there was a vaccine against pregnancy and not only had only 1/3 of the population had been vaccinated, but a significant portion of the population was reluctant to take it? Better wear a condom, right?
 
In quotes below is the part of the article that I dispute. It goes contrary to every medical website there is. Every one of them. You can get the anti-science, anti-vaxxers to give you thumbs-up until the cows come home but every object, halfway scientific literate person knows that the article in your link is a shame. I actually submitted links to several actual, valid medical websites. You did not look at them, did you? They are the real deal, not this silliness you posted.

"Introduction

Facemasks are part of non-pharmaceutical interventions providing some breathing barrier to the mouth and nose that have been utilized for reducing the transmission of respiratory pathogens [1]. Facemasks can be medical and non-medical, where two types of the medical masks primarily used by healthcare workers [1], [2]. The first type is National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask, a filtering face-piece respirator, and the second type is a surgical mask [1]. The designed and intended uses of N95 and surgical masks are different in the type of protection they potentially provide. The N95s are typically composed of electret filter media and seal tightly to the face of the wearer, whereas surgical masks are generally loose fitting and may or may not contain electret-filtering media. The N95s are designed to reduce the wearer’s inhalation exposure to infectious and harmful particles from the environment such as during extermination of insects. In contrast, surgical masks are designed to provide a barrier protection against splash, spittle and other body fluids to spray from the wearer (such as surgeon) to the sterile environment (patient during operation) for reducing the risk of contamination [1].

The third type of facemasks are the non-medical cloth or fabric masks. The non-medical facemasks are made from a variety of woven and non-woven materials such as Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk. Although non-medical cloth or fabric facemasks are neither a medical device nor personal protective equipment, some standards have been developed by the French Standardization Association (AFNOR Group) to define a minimum performance for filtration and breathability capacity [2]. The current article reviews the scientific evidences with respect to safety and efficacy of wearing facemasks, describing the physiological and psychological effects and the potential long-term consequences on health.

MyPillow NOQ
Hypothesis
On January 30, 2020, the World Health Organization (WHO) announced a global public health emergency of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causing illness of coronavirus disease-2019 (COVID-19) [3]. As of October 1, 2020, worldwide 34,166,633 cases were reported and 1,018,876 have died with virus diagnosis. Interestingly, 99% of the detected cases with SARS-CoV-2 are asymptomatic or have mild condition, which contradicts with the virus name (severe acute respiratory syndrome-coronavirus-2) [4]. Although infection fatality rate (number of death cases divided by number of reported cases) initially seems quite high 0.029 (2.9%) [4], this overestimation related to limited number of COVID-19 tests performed which biases towards higher rates. Given the fact that asymptomatic or minimally symptomatic cases is several times higher than the number of reported cases, the case fatality rate is considerably less than 1% [5]. This was confirmed by the head of National Institute of Allergy and Infectious Diseases from US stating, “the overall clinical consequences of COVID-19 are similar to those of severe seasonal influenza” [5], having a case fatality rate of approximately 0.1% [5], [6], [7], [8]. In addition, data from hospitalized patients with COVID-19 and general public indicate that the majority of deaths were among older and chronically ill individuals, supporting the possibility that the virus may exacerbates existing conditions but rarely causes death by itself [9], [10]. SARS-CoV-2 primarily affects respiratory system and can cause complications such as acute respiratory distress syndrome (ARDS), respiratory failure and death [3], [9]. It is not clear however, what the scientific and clinical basis for wearing facemasks as protective strategy, given the fact that facemasks restrict breathing, causing hypoxemia and hypercapnia and increase the risk for respiratory complications, self-contamination and exacerbation of existing chronic conditions [2], [11], [12], [13], [14].

Of note, hyperoxia or oxygen supplementation (breathing air with high partial O2 pressures that above the sea levels) has been well established as therapeutic and curative practice for variety acute and chronic conditions including respiratory complications [11], [15]. It fact, the current standard of care practice for treating hospitalized patients with COVID-19 is breathing 100% oxygen [16], [17], [18]. Although several countries mandated wearing facemask in health care settings and public areas, scientific evidences are lacking supporting their efficacy for reducing morbidity or mortality associated with infectious or viral diseases [2], [14], [19]. Therefore, it has been hypothesized: 1) the practice of wearing facemasks has compromised safety and efficacy profile, 2) Both medical and non-medical facemasks are ineffective to reduce human-to-human transmission and infectivity of SARS-CoV-2 and COVID-19, 3) Wearing facemasks has adverse physiological and psychological effects, 4) Long-term consequences of wearing facemasks on health are detrimental.

Evolution of hypothesis
Breathing Physiology
Breathing is one of the most important physiological functions to sustain life and health. Human body requires a continuous and adequate oxygen (O2) supply to all organs and cells for normal function and survival. Breathing is also an essential process for removing metabolic byproducts [carbon dioxide (CO2)] occurring during cell respiration [12], [13]. It is well established that acute significant deficit in O2 (hypoxemia) and increased levels of CO2 (hypercapnia) even for few minutes can be severely harmful and lethal, while chronic hypoxemia and hypercapnia cause health deterioration, exacerbation of existing conditions, morbidity and ultimately mortality [11], [20], [21], [22]. Emergency medicine demonstrates that 5–6 min of severe hypoxemia during cardiac arrest will cause brain death with extremely poor survival rates [20], [21], [22], [23]. On the other hand, chronic mild or moderate hypoxemia and hypercapnia such as from wearing facemasks resulting in shifting to higher contribution of anaerobic energy metabolism, decrease in pH levels and increase in cells and blood acidity, toxicity, oxidative stress, chronic inflammation, immunosuppression and health deterioration [24], [11], [12], [13].

Efficacy of facemasks
The physical properties of medical and non-medical facemasks suggest that facemasks are ineffective to block viral particles due to their difference in scales [16], [17], [25]. According to the current knowledge, the virus SARS-CoV-2 has a diameter of 60 nm to 140 nm [nanometers (billionth of a meter)] [16], [17], while medical and non-medical facemasks’ thread diameter ranges from 55 µm to 440 µm [micrometers (one millionth of a meter), which is more than 1000 times larger [25]. Due to the difference in sizes between SARS-CoV-2 diameter and facemasks thread diameter (the virus is 1000 times smaller), SARS-CoV-2 can easily pass through any facemask [25]. In addition, the efficiency filtration rate of facemasks is poor, ranging from 0.7% in non-surgical, cotton-gauze woven mask to 26% in cotton sweeter material [2]. With respect to surgical and N95 medical facemasks, the efficiency filtration rate falls to 15% and 58%, respectively when even small gap between the mask and the face exists [25].

Learn more about RevenueStripe...

Clinical scientific evidence challenges further the efficacy of facemasks to block human-to-human transmission or infectivity. A randomized controlled trial (RCT) of 246 participants [123 (50%) symptomatic)] who were allocated to either wearing or not wearing surgical facemask, assessing viruses transmission including coronavirus [26]. The results of this study showed that among symptomatic individuals (those with fever, cough, sore throat, runny nose ect…) there was no difference between wearing and not wearing facemask for coronavirus droplets transmission of particles of >5 µm. Among asymptomatic individuals, there was no droplets or aerosols coronavirus detected from any participant with or without the mask, suggesting that asymptomatic individuals do not transmit or infect other people [26]. This was further supported by a study on infectivity where 445 asymptomatic individuals were exposed to asymptomatic SARS-CoV-2 carrier (been positive for SARS-CoV-2) using close contact (shared quarantine space) for a median of 4 to 5 days. The study found that none of the 445 individuals was infected with SARS-CoV-2 confirmed by real-time reverse transcription polymerase [27].

A meta-analysis among health care workers found that compared to no masks, surgical mask and N95 respirators were not effective against transmission of viral infections or influenza-like illness based on six RCTs [28]. Using separate analysis of 23 observational studies, this meta-analysis found no protective effect of medical mask or N95 respirators against SARS virus [28]. A recent systematic review of 39 studies including 33,867 participants in community settings (self-report illness), found no difference between N95 respirators versus surgical masks and surgical mask versus no masks in the risk for developing influenza or influenza-like illness, suggesting their ineffectiveness of blocking viral transmissions in community settings [29].

Another meta-analysis of 44 non-RCT studies (n = 25,697 participants) examining the potential risk reduction of facemasks against SARS, middle east respiratory syndrome (MERS) and COVID-19 transmissions [30]. The meta-analysis included four specific studies on COVID-19 transmission (5,929 participants, primarily health-care workers used N95 masks). Although the overall findings showed reduced risk of virus transmission with facemasks, the analysis had severe limitations to draw conclusions. One of the four COVID-19 studies had zero infected cases in both arms, and was excluded from meta-analytic calculation. Other two COVID-19 studies had unadjusted models, and were also excluded from the overall analysis. The meta-analytic results were based on only one COVID-19, one MERS and 8 SARS studies, resulting in high selection bias of the studies and contamination of the results between different viruses. Based on four COVID-19 studies, the meta-analysis failed to demonstrate risk reduction of facemasks for COVID-19 transmission, where the authors reported that the results of meta-analysis have low certainty and are inconclusive [30].

In early publication the WHO stated that “facemasks are not required, as no evidence is available on its usefulness to protect non-sick persons” [14]. In the same publication, the WHO declared that “cloth (e.g. cotton or gauze) masks are not recommended under any circumstance” [14]. Conversely, in later publication the WHO stated that the usage of fabric-made facemasks (Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk) is a general community practice for “preventing the infected wearer transmitting the virus to others and/or to offer protection to the healthy wearer against infection (prevention)” [2]. The same publication further conflicted itself by stating that due to the lower filtration, breathability and overall performance of fabric facemasks, the usage of woven fabric mask such as cloth, and/or non-woven fabrics, should only be considered for infected persons and not for prevention practice in asymptomatic individuals [2]. The Central for Disease Control and Prevention (CDC) made similar recommendation, stating that only symptomatic persons should consider wearing facemask, while for asymptomatic individuals this practice is not recommended [31]. Consistent with the CDC, clinical scientists from Departments of Infectious Diseases and Microbiology in Australia counsel against facemasks usage for health-care workers, arguing that there is no justification for such practice while normal caring relationship between patients and medical staff could be compromised [32]. Moreover, the WHO repeatedly announced that “at present, there is no direct evidence (from studies on COVID-19) on the effectiveness face masking of healthy people in the community to prevent infection of respiratory viruses, including COVID-19”[2]. Despite these controversies, the potential harms and risks of wearing facemasks were clearly acknowledged. These including self-contamination due to hand practice or non-replaced when the mask is wet, soiled or damaged, development of facial skin lesions, irritant dermatitis or worsening acne and psychological discomfort. Vulnerable populations such as people with mental health disorders, developmental disabilities, hearing problems, those living in hot and humid environments, children and patients with respiratory conditions are at significant health risk for complications and harm [2].







0:47 / 1:15:50

Physiological effects of wearing facemasks
Wearing facemask mechanically restricts breathing by increasing the resistance of air movement during both inhalation and exhalation process [12], [13]. Although, intermittent (several times a week) and repetitive (10–15 breaths for 2–4 sets) increase in respiration resistance may be adaptive for strengthening respiratory muscles [33], [34], prolonged and continues effect of wearing facemask is maladaptive and could be detrimental for health [11], [12], [13]. In normal conditions at the sea level, air contains 20.93% O2 and 0.03% CO2, providing partial pressures of 100 mmHg and 40 mmHg for these gases in the arterial blood, respectively. These gas concentrations significantly altered when breathing occurs through facemask. A trapped air remaining between the mouth, nose and the facemask is rebreathed repeatedly in and out of the body, containing low O2 and high CO2 concentrations, causing hypoxemia and hypercapnia [35], [36], [11], [12], [13]. Severe hypoxemia may also provoke cardiopulmonary and neurological complications and is considered an important clinical sign in cardiopulmonary medicine [37], [38], [39], [40], [41], [42]. Low oxygen content in the arterial blood can cause myocardial ischemia, serious arrhythmias, right or left ventricular dysfunction, dizziness, hypotension, syncope and pulmonary hypertension [43]. Chronic low-grade hypoxemia and hypercapnia as result of using facemask can cause exacerbation of existing cardiopulmonary, metabolic, vascular and neurological conditions [37], [38], [39], [40], [41], [42]. Table 1 summarizes the physiological, psychological effects of wearing facemask and their potential long-term consequences for health.

Table 1. Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences.

Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences

In addition to hypoxia and hypercapnia, breathing through facemask residues bacterial and germs components on the inner and outside layer of the facemask. These toxic components are repeatedly rebreathed back into the body, causing self-contamination. Breathing through facemasks also increases temperature and humidity in the space between the mouth and the mask, resulting a release of toxic particles from the mask’s materials [1], [2], [19], [26], [35], [36]. A systematic literature review estimated that aerosol contamination levels of facemasks including 13 to 202,549 different viruses [1]. Rebreathing contaminated air with high bacterial and toxic particle concentrations along with low O2 and high CO2 levels continuously challenge the body homeostasis, causing self-toxicity and immunosuppression [1], [2], [19], [26], [35], [36].

A study on 39 patients with renal disease found that wearing N95 facemask during hemodialysis significantly reduced arterial partial oxygen pressure (from PaO2 101.7 to 92.7 mm Hg), increased respiratory rate (from 16.8 to 18.8 breaths/min), and increased the occurrence of chest discomfort and respiratory distress [35]. Respiratory Protection Standards from Occupational Safety and Health Administration, US Department of Labor states that breathing air with O2 concentration below 19.5% is considered oxygen-deficiency, causing physiological and health adverse effects. These include increased breathing frequency, accelerated heartrate and cognitive impairments related to thinking and coordination [36]. A chronic state of mild hypoxia and hypercapnia has been shown as primarily mechanism for developing cognitive dysfunction based on animal studies and studies in patients with chronic obstructive pulmonary disease [44].

The adverse physiological effects were confirmed in a study of 53 surgeons where surgical facemask were used during a major operation. After 60 min of facemask wearing the oxygen saturation dropped by more than 1% and heart rate increased by approximately five beats/min [45]. Another study among 158 health-care workers using protective personal equipment primarily N95 facemasks reported that 81% (128 workers) developed new headaches during their work shifts as these become mandatory due to COVID-19 outbreak. For those who used the N95 facemask greater than 4 h per day, the likelihood for developing a headache during the work shift was approximately four times higher [Odds ratio = 3.91, 95% CI (1.35–11.31) p = 0.012], while 82.2% of the N95 wearers developed the headache already within ≤10 to 50 min [46].

With respect to cloth facemask, a RCT using four weeks follow up compared the effect of cloth facemask to medical masks and to no masks on the incidence of clinical respiratory illness, influenza-like illness and laboratory-confirmed respiratory virus infections among 1607 participants from 14 hospitals [19]. The results showed that there were no difference between wearing cloth masks, medical masks and no masks for incidence of clinical respiratory illness and laboratory-confirmed respiratory virus infections. However, a large harmful effect with more than 13 times higher risk [Relative Risk = 13.25 95% CI (1.74 to 100.97) was observed for influenza-like illness among those who were wearing cloth masks [19]. The study concluded that cloth masks have significant health and safety issues including moisture retention, reuse, poor filtration and increased risk for infection, providing recommendation against the use of cloth masks [19].

Psychological effects of wearing facemasks
Psychologically, wearing facemask fundamentally has negative effects on the wearer and the nearby person. Basic human-to-human connectivity through face expression is compromised and self-identity is somewhat eliminated [47], [48], [49]. These dehumanizing movements partially delete the uniqueness and individuality of person who wearing the facemask as well as the connected person [49]. Social connections and relationships are basic human needs, which innately inherited in all people, whereas reduced human-to-human connections are associated with poor mental and physical health [50], [51]. Despite escalation in technology and globalization that would presumably foster social connections, scientific findings show that people are becoming increasingly more socially isolated, and the prevalence of loneliness is increasing in last few decades [50], [52]. Poor social connections are closely related to isolation and loneliness, considered significant health related risk factors [50], [51], [52], [53].

A meta-analysis of 91 studies of about 400,000 people showed a 13% increased morality risk among people with low compare to high contact frequency [53]. Another meta-analysis of 148 prospective studies (308,849 participants) found that poor social relationships was associated with 50% increased mortality risk. People who were socially isolated or fell lonely had 45% and 40% increased mortality risk, respectively. These findings were consistent across ages, sex, initial health status, cause of death and follow-up periods [52]. Importantly, the increased risk for mortality was found comparable to smoking and exceeding well-established risk factors such as obesity and physical inactivity [52]. An umbrella review of 40 systematic reviews including 10 meta-analyses demonstrated that compromised social relationships were associated with increased risk of all-cause mortality, depression, anxiety suicide, cancer and overall physical illness [51].

As described earlier, wearing facemasks causing hypoxic and hypercapnic state that constantly challenges the normal homeostasis, and activates “fight or flight” stress response, an important survival mechanism in the human body [11], [12], [13]. The acute stress response includes activation of nervous, endocrine, cardiovascular, and the immune systems [47], [54], [55], [56]. These include activation of the limbic part of the brain, release stress hormones (adrenalin, neuro-adrenalin and cortisol), changes in blood flow distribution (vasodilation of peripheral blood vessels and vasoconstriction of visceral blood vessels) and activation of the immune system response (secretion of macrophages and natural killer cells) [47], [48]. Encountering people who wearing facemasks activates innate stress-fear emotion, which is fundamental to all humans in danger or life threating situations, such as death or unknown, unpredictable outcome. While acute stress response (seconds to minutes) is adaptive reaction to challenges and part of the survival mechanism, chronic and prolonged state of stress-fear is maladaptive and has detrimental effects on physical and mental health. The repeatedly or continuously activated stress-fear response causes the body to operate on survival mode, having sustain increase in blood pressure, pro-inflammatory state and immunosuppression [47], [48].

Long-Term health consequences of wearing facemasks
Long-term practice of wearing facemasks has strong potential for devastating health consequences. Prolonged hypoxic-hypercapnic state compromises normal physiological and psychological balance, deteriorating health and promotes the developing and progression of existing chronic diseases [23], [38], [39], [43], [47], [48], [57], [11], [12], [13]. For instance, ischemic heart disease caused by hypoxic damage to the myocardium is the most common form of cardiovascular disease and is a number one cause of death worldwide (44% of all non-communicable diseases) with 17.9 million deaths occurred in 2016 [57]. Hypoxia also playing an important role in cancer burden [58]. Cellular hypoxia has strong mechanistic feature in promoting cancer initiation, progression, metastasis, predicting clinical outcomes and usually presents a poorer survival in patients with cancer. Most solid tumors present some degree of hypoxia, which is independent predictor of more aggressive disease, resistance to cancer therapies and poorer clinical outcomes [59], [60]. Worth note, cancer is one of the leading causes of death worldwide, with an estimate of more than 18 million new diagnosed cases and 9.6 million cancer-related deaths occurred in 2018 [61].

With respect to mental health, global estimates showing that COVID-19 will cause a catastrophe due to collateral psychological damage such as quarantine, lockdowns, unemployment, economic collapse, social isolation, violence and suicides [62], [63], [64]. Chronic stress along with hypoxic and hypercapnic conditions knocks the body out of balance, and can cause headaches, fatigue, stomach issues, muscle tension, mood disturbances, insomnia and accelerated aging [47], [48], [65], [66], [67]. This state suppressing the immune system to protect the body from viruses and bacteria, decreasing cognitive function, promoting the developing and exacerbating the major health issues including hypertension, cardiovascular disease, diabetes, cancer, Alzheimer disease, rising anxiety and depression states, causes social isolation and loneliness and increasing the risk for prematurely mortality [47], [48], [51], [56], [66].

Conclusion
The existing scientific evidences challenge the safety and efficacy of wearing facemask as preventive intervention for COVID-19. The data suggest that both medical and non-medical facemasks are ineffective to block human-to-human transmission of viral and infectious disease such SARS-CoV-2 and COVID-19, supporting against the usage of facemasks. Wearing facemasks has been demonstrated to have substantial adverse physiological and psychological effects. These include hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, activation of fear and stress response, rise in stress hormones, immunosuppression, fatigue, headaches, decline in cognitive performance, predisposition for viral and infectious illnesses, chronic stress, anxiety and depression. Long-term consequences of wearing facemask can cause health deterioration, developing and progression of chronic diseases and premature death. Governments, policy makers and health organizations should utilize prosper and scientific evidence-based approach with respect to wearing facemasks, when the latter is considered as preventive intervention for public health."
You still failed to isolate what exactly you dispute from the article. Posting the entire article does not even demonstrate that you even read and understood it. If you want to win this, you will need to post something from that article that you dispute, and then explain how the part you quoted is flawed or inaccurate. Just so you know, your next post will once again be something besides a quote of something you dispute from the article.
It's the whole article I object to. All of it is a shame. There is no picking out one part. It is all of it. Now, what do you have against the American Medical Association. or Johns Hopkins, or the Mayo Clinic? I've stated my position so, what do you have against actual, real medical websites?
Once again you were unable to isolate even a single item to dispute. Go on now, post your next evasion.
 
In quotes below is the part of the article that I dispute. It goes contrary to every medical website there is. Every one of them. You can get the anti-science, anti-vaxxers to give you thumbs-up until the cows come home but every object, halfway scientific literate person knows that the article in your link is a shame. I actually submitted links to several actual, valid medical websites. You did not look at them, did you? They are the real deal, not this silliness you posted.

"Introduction

Facemasks are part of non-pharmaceutical interventions providing some breathing barrier to the mouth and nose that have been utilized for reducing the transmission of respiratory pathogens [1]. Facemasks can be medical and non-medical, where two types of the medical masks primarily used by healthcare workers [1], [2]. The first type is National Institute for Occupational Safety and Health (NIOSH)-certified N95 mask, a filtering face-piece respirator, and the second type is a surgical mask [1]. The designed and intended uses of N95 and surgical masks are different in the type of protection they potentially provide. The N95s are typically composed of electret filter media and seal tightly to the face of the wearer, whereas surgical masks are generally loose fitting and may or may not contain electret-filtering media. The N95s are designed to reduce the wearer’s inhalation exposure to infectious and harmful particles from the environment such as during extermination of insects. In contrast, surgical masks are designed to provide a barrier protection against splash, spittle and other body fluids to spray from the wearer (such as surgeon) to the sterile environment (patient during operation) for reducing the risk of contamination [1].

The third type of facemasks are the non-medical cloth or fabric masks. The non-medical facemasks are made from a variety of woven and non-woven materials such as Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk. Although non-medical cloth or fabric facemasks are neither a medical device nor personal protective equipment, some standards have been developed by the French Standardization Association (AFNOR Group) to define a minimum performance for filtration and breathability capacity [2]. The current article reviews the scientific evidences with respect to safety and efficacy of wearing facemasks, describing the physiological and psychological effects and the potential long-term consequences on health.

MyPillow NOQ
Hypothesis
On January 30, 2020, the World Health Organization (WHO) announced a global public health emergency of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causing illness of coronavirus disease-2019 (COVID-19) [3]. As of October 1, 2020, worldwide 34,166,633 cases were reported and 1,018,876 have died with virus diagnosis. Interestingly, 99% of the detected cases with SARS-CoV-2 are asymptomatic or have mild condition, which contradicts with the virus name (severe acute respiratory syndrome-coronavirus-2) [4]. Although infection fatality rate (number of death cases divided by number of reported cases) initially seems quite high 0.029 (2.9%) [4], this overestimation related to limited number of COVID-19 tests performed which biases towards higher rates. Given the fact that asymptomatic or minimally symptomatic cases is several times higher than the number of reported cases, the case fatality rate is considerably less than 1% [5]. This was confirmed by the head of National Institute of Allergy and Infectious Diseases from US stating, “the overall clinical consequences of COVID-19 are similar to those of severe seasonal influenza” [5], having a case fatality rate of approximately 0.1% [5], [6], [7], [8]. In addition, data from hospitalized patients with COVID-19 and general public indicate that the majority of deaths were among older and chronically ill individuals, supporting the possibility that the virus may exacerbates existing conditions but rarely causes death by itself [9], [10]. SARS-CoV-2 primarily affects respiratory system and can cause complications such as acute respiratory distress syndrome (ARDS), respiratory failure and death [3], [9]. It is not clear however, what the scientific and clinical basis for wearing facemasks as protective strategy, given the fact that facemasks restrict breathing, causing hypoxemia and hypercapnia and increase the risk for respiratory complications, self-contamination and exacerbation of existing chronic conditions [2], [11], [12], [13], [14].

Of note, hyperoxia or oxygen supplementation (breathing air with high partial O2 pressures that above the sea levels) has been well established as therapeutic and curative practice for variety acute and chronic conditions including respiratory complications [11], [15]. It fact, the current standard of care practice for treating hospitalized patients with COVID-19 is breathing 100% oxygen [16], [17], [18]. Although several countries mandated wearing facemask in health care settings and public areas, scientific evidences are lacking supporting their efficacy for reducing morbidity or mortality associated with infectious or viral diseases [2], [14], [19]. Therefore, it has been hypothesized: 1) the practice of wearing facemasks has compromised safety and efficacy profile, 2) Both medical and non-medical facemasks are ineffective to reduce human-to-human transmission and infectivity of SARS-CoV-2 and COVID-19, 3) Wearing facemasks has adverse physiological and psychological effects, 4) Long-term consequences of wearing facemasks on health are detrimental.

Evolution of hypothesis
Breathing Physiology
Breathing is one of the most important physiological functions to sustain life and health. Human body requires a continuous and adequate oxygen (O2) supply to all organs and cells for normal function and survival. Breathing is also an essential process for removing metabolic byproducts [carbon dioxide (CO2)] occurring during cell respiration [12], [13]. It is well established that acute significant deficit in O2 (hypoxemia) and increased levels of CO2 (hypercapnia) even for few minutes can be severely harmful and lethal, while chronic hypoxemia and hypercapnia cause health deterioration, exacerbation of existing conditions, morbidity and ultimately mortality [11], [20], [21], [22]. Emergency medicine demonstrates that 5–6 min of severe hypoxemia during cardiac arrest will cause brain death with extremely poor survival rates [20], [21], [22], [23]. On the other hand, chronic mild or moderate hypoxemia and hypercapnia such as from wearing facemasks resulting in shifting to higher contribution of anaerobic energy metabolism, decrease in pH levels and increase in cells and blood acidity, toxicity, oxidative stress, chronic inflammation, immunosuppression and health deterioration [24], [11], [12], [13].

Efficacy of facemasks
The physical properties of medical and non-medical facemasks suggest that facemasks are ineffective to block viral particles due to their difference in scales [16], [17], [25]. According to the current knowledge, the virus SARS-CoV-2 has a diameter of 60 nm to 140 nm [nanometers (billionth of a meter)] [16], [17], while medical and non-medical facemasks’ thread diameter ranges from 55 µm to 440 µm [micrometers (one millionth of a meter), which is more than 1000 times larger [25]. Due to the difference in sizes between SARS-CoV-2 diameter and facemasks thread diameter (the virus is 1000 times smaller), SARS-CoV-2 can easily pass through any facemask [25]. In addition, the efficiency filtration rate of facemasks is poor, ranging from 0.7% in non-surgical, cotton-gauze woven mask to 26% in cotton sweeter material [2]. With respect to surgical and N95 medical facemasks, the efficiency filtration rate falls to 15% and 58%, respectively when even small gap between the mask and the face exists [25].

Learn more about RevenueStripe...

Clinical scientific evidence challenges further the efficacy of facemasks to block human-to-human transmission or infectivity. A randomized controlled trial (RCT) of 246 participants [123 (50%) symptomatic)] who were allocated to either wearing or not wearing surgical facemask, assessing viruses transmission including coronavirus [26]. The results of this study showed that among symptomatic individuals (those with fever, cough, sore throat, runny nose ect…) there was no difference between wearing and not wearing facemask for coronavirus droplets transmission of particles of >5 µm. Among asymptomatic individuals, there was no droplets or aerosols coronavirus detected from any participant with or without the mask, suggesting that asymptomatic individuals do not transmit or infect other people [26]. This was further supported by a study on infectivity where 445 asymptomatic individuals were exposed to asymptomatic SARS-CoV-2 carrier (been positive for SARS-CoV-2) using close contact (shared quarantine space) for a median of 4 to 5 days. The study found that none of the 445 individuals was infected with SARS-CoV-2 confirmed by real-time reverse transcription polymerase [27].

A meta-analysis among health care workers found that compared to no masks, surgical mask and N95 respirators were not effective against transmission of viral infections or influenza-like illness based on six RCTs [28]. Using separate analysis of 23 observational studies, this meta-analysis found no protective effect of medical mask or N95 respirators against SARS virus [28]. A recent systematic review of 39 studies including 33,867 participants in community settings (self-report illness), found no difference between N95 respirators versus surgical masks and surgical mask versus no masks in the risk for developing influenza or influenza-like illness, suggesting their ineffectiveness of blocking viral transmissions in community settings [29].

Another meta-analysis of 44 non-RCT studies (n = 25,697 participants) examining the potential risk reduction of facemasks against SARS, middle east respiratory syndrome (MERS) and COVID-19 transmissions [30]. The meta-analysis included four specific studies on COVID-19 transmission (5,929 participants, primarily health-care workers used N95 masks). Although the overall findings showed reduced risk of virus transmission with facemasks, the analysis had severe limitations to draw conclusions. One of the four COVID-19 studies had zero infected cases in both arms, and was excluded from meta-analytic calculation. Other two COVID-19 studies had unadjusted models, and were also excluded from the overall analysis. The meta-analytic results were based on only one COVID-19, one MERS and 8 SARS studies, resulting in high selection bias of the studies and contamination of the results between different viruses. Based on four COVID-19 studies, the meta-analysis failed to demonstrate risk reduction of facemasks for COVID-19 transmission, where the authors reported that the results of meta-analysis have low certainty and are inconclusive [30].

In early publication the WHO stated that “facemasks are not required, as no evidence is available on its usefulness to protect non-sick persons” [14]. In the same publication, the WHO declared that “cloth (e.g. cotton or gauze) masks are not recommended under any circumstance” [14]. Conversely, in later publication the WHO stated that the usage of fabric-made facemasks (Polypropylene, Cotton, Polyester, Cellulose, Gauze and Silk) is a general community practice for “preventing the infected wearer transmitting the virus to others and/or to offer protection to the healthy wearer against infection (prevention)” [2]. The same publication further conflicted itself by stating that due to the lower filtration, breathability and overall performance of fabric facemasks, the usage of woven fabric mask such as cloth, and/or non-woven fabrics, should only be considered for infected persons and not for prevention practice in asymptomatic individuals [2]. The Central for Disease Control and Prevention (CDC) made similar recommendation, stating that only symptomatic persons should consider wearing facemask, while for asymptomatic individuals this practice is not recommended [31]. Consistent with the CDC, clinical scientists from Departments of Infectious Diseases and Microbiology in Australia counsel against facemasks usage for health-care workers, arguing that there is no justification for such practice while normal caring relationship between patients and medical staff could be compromised [32]. Moreover, the WHO repeatedly announced that “at present, there is no direct evidence (from studies on COVID-19) on the effectiveness face masking of healthy people in the community to prevent infection of respiratory viruses, including COVID-19”[2]. Despite these controversies, the potential harms and risks of wearing facemasks were clearly acknowledged. These including self-contamination due to hand practice or non-replaced when the mask is wet, soiled or damaged, development of facial skin lesions, irritant dermatitis or worsening acne and psychological discomfort. Vulnerable populations such as people with mental health disorders, developmental disabilities, hearing problems, those living in hot and humid environments, children and patients with respiratory conditions are at significant health risk for complications and harm [2].







0:47 / 1:15:50

Physiological effects of wearing facemasks
Wearing facemask mechanically restricts breathing by increasing the resistance of air movement during both inhalation and exhalation process [12], [13]. Although, intermittent (several times a week) and repetitive (10–15 breaths for 2–4 sets) increase in respiration resistance may be adaptive for strengthening respiratory muscles [33], [34], prolonged and continues effect of wearing facemask is maladaptive and could be detrimental for health [11], [12], [13]. In normal conditions at the sea level, air contains 20.93% O2 and 0.03% CO2, providing partial pressures of 100 mmHg and 40 mmHg for these gases in the arterial blood, respectively. These gas concentrations significantly altered when breathing occurs through facemask. A trapped air remaining between the mouth, nose and the facemask is rebreathed repeatedly in and out of the body, containing low O2 and high CO2 concentrations, causing hypoxemia and hypercapnia [35], [36], [11], [12], [13]. Severe hypoxemia may also provoke cardiopulmonary and neurological complications and is considered an important clinical sign in cardiopulmonary medicine [37], [38], [39], [40], [41], [42]. Low oxygen content in the arterial blood can cause myocardial ischemia, serious arrhythmias, right or left ventricular dysfunction, dizziness, hypotension, syncope and pulmonary hypertension [43]. Chronic low-grade hypoxemia and hypercapnia as result of using facemask can cause exacerbation of existing cardiopulmonary, metabolic, vascular and neurological conditions [37], [38], [39], [40], [41], [42]. Table 1 summarizes the physiological, psychological effects of wearing facemask and their potential long-term consequences for health.

Table 1. Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences.

Physiological and Psychological Effects of Wearing Facemask and Their Potential Health Consequences

In addition to hypoxia and hypercapnia, breathing through facemask residues bacterial and germs components on the inner and outside layer of the facemask. These toxic components are repeatedly rebreathed back into the body, causing self-contamination. Breathing through facemasks also increases temperature and humidity in the space between the mouth and the mask, resulting a release of toxic particles from the mask’s materials [1], [2], [19], [26], [35], [36]. A systematic literature review estimated that aerosol contamination levels of facemasks including 13 to 202,549 different viruses [1]. Rebreathing contaminated air with high bacterial and toxic particle concentrations along with low O2 and high CO2 levels continuously challenge the body homeostasis, causing self-toxicity and immunosuppression [1], [2], [19], [26], [35], [36].

A study on 39 patients with renal disease found that wearing N95 facemask during hemodialysis significantly reduced arterial partial oxygen pressure (from PaO2 101.7 to 92.7 mm Hg), increased respiratory rate (from 16.8 to 18.8 breaths/min), and increased the occurrence of chest discomfort and respiratory distress [35]. Respiratory Protection Standards from Occupational Safety and Health Administration, US Department of Labor states that breathing air with O2 concentration below 19.5% is considered oxygen-deficiency, causing physiological and health adverse effects. These include increased breathing frequency, accelerated heartrate and cognitive impairments related to thinking and coordination [36]. A chronic state of mild hypoxia and hypercapnia has been shown as primarily mechanism for developing cognitive dysfunction based on animal studies and studies in patients with chronic obstructive pulmonary disease [44].

The adverse physiological effects were confirmed in a study of 53 surgeons where surgical facemask were used during a major operation. After 60 min of facemask wearing the oxygen saturation dropped by more than 1% and heart rate increased by approximately five beats/min [45]. Another study among 158 health-care workers using protective personal equipment primarily N95 facemasks reported that 81% (128 workers) developed new headaches during their work shifts as these become mandatory due to COVID-19 outbreak. For those who used the N95 facemask greater than 4 h per day, the likelihood for developing a headache during the work shift was approximately four times higher [Odds ratio = 3.91, 95% CI (1.35–11.31) p = 0.012], while 82.2% of the N95 wearers developed the headache already within ≤10 to 50 min [46].

With respect to cloth facemask, a RCT using four weeks follow up compared the effect of cloth facemask to medical masks and to no masks on the incidence of clinical respiratory illness, influenza-like illness and laboratory-confirmed respiratory virus infections among 1607 participants from 14 hospitals [19]. The results showed that there were no difference between wearing cloth masks, medical masks and no masks for incidence of clinical respiratory illness and laboratory-confirmed respiratory virus infections. However, a large harmful effect with more than 13 times higher risk [Relative Risk = 13.25 95% CI (1.74 to 100.97) was observed for influenza-like illness among those who were wearing cloth masks [19]. The study concluded that cloth masks have significant health and safety issues including moisture retention, reuse, poor filtration and increased risk for infection, providing recommendation against the use of cloth masks [19].

Psychological effects of wearing facemasks
Psychologically, wearing facemask fundamentally has negative effects on the wearer and the nearby person. Basic human-to-human connectivity through face expression is compromised and self-identity is somewhat eliminated [47], [48], [49]. These dehumanizing movements partially delete the uniqueness and individuality of person who wearing the facemask as well as the connected person [49]. Social connections and relationships are basic human needs, which innately inherited in all people, whereas reduced human-to-human connections are associated with poor mental and physical health [50], [51]. Despite escalation in technology and globalization that would presumably foster social connections, scientific findings show that people are becoming increasingly more socially isolated, and the prevalence of loneliness is increasing in last few decades [50], [52]. Poor social connections are closely related to isolation and loneliness, considered significant health related risk factors [50], [51], [52], [53].

A meta-analysis of 91 studies of about 400,000 people showed a 13% increased morality risk among people with low compare to high contact frequency [53]. Another meta-analysis of 148 prospective studies (308,849 participants) found that poor social relationships was associated with 50% increased mortality risk. People who were socially isolated or fell lonely had 45% and 40% increased mortality risk, respectively. These findings were consistent across ages, sex, initial health status, cause of death and follow-up periods [52]. Importantly, the increased risk for mortality was found comparable to smoking and exceeding well-established risk factors such as obesity and physical inactivity [52]. An umbrella review of 40 systematic reviews including 10 meta-analyses demonstrated that compromised social relationships were associated with increased risk of all-cause mortality, depression, anxiety suicide, cancer and overall physical illness [51].

As described earlier, wearing facemasks causing hypoxic and hypercapnic state that constantly challenges the normal homeostasis, and activates “fight or flight” stress response, an important survival mechanism in the human body [11], [12], [13]. The acute stress response includes activation of nervous, endocrine, cardiovascular, and the immune systems [47], [54], [55], [56]. These include activation of the limbic part of the brain, release stress hormones (adrenalin, neuro-adrenalin and cortisol), changes in blood flow distribution (vasodilation of peripheral blood vessels and vasoconstriction of visceral blood vessels) and activation of the immune system response (secretion of macrophages and natural killer cells) [47], [48]. Encountering people who wearing facemasks activates innate stress-fear emotion, which is fundamental to all humans in danger or life threating situations, such as death or unknown, unpredictable outcome. While acute stress response (seconds to minutes) is adaptive reaction to challenges and part of the survival mechanism, chronic and prolonged state of stress-fear is maladaptive and has detrimental effects on physical and mental health. The repeatedly or continuously activated stress-fear response causes the body to operate on survival mode, having sustain increase in blood pressure, pro-inflammatory state and immunosuppression [47], [48].

Long-Term health consequences of wearing facemasks
Long-term practice of wearing facemasks has strong potential for devastating health consequences. Prolonged hypoxic-hypercapnic state compromises normal physiological and psychological balance, deteriorating health and promotes the developing and progression of existing chronic diseases [23], [38], [39], [43], [47], [48], [57], [11], [12], [13]. For instance, ischemic heart disease caused by hypoxic damage to the myocardium is the most common form of cardiovascular disease and is a number one cause of death worldwide (44% of all non-communicable diseases) with 17.9 million deaths occurred in 2016 [57]. Hypoxia also playing an important role in cancer burden [58]. Cellular hypoxia has strong mechanistic feature in promoting cancer initiation, progression, metastasis, predicting clinical outcomes and usually presents a poorer survival in patients with cancer. Most solid tumors present some degree of hypoxia, which is independent predictor of more aggressive disease, resistance to cancer therapies and poorer clinical outcomes [59], [60]. Worth note, cancer is one of the leading causes of death worldwide, with an estimate of more than 18 million new diagnosed cases and 9.6 million cancer-related deaths occurred in 2018 [61].

With respect to mental health, global estimates showing that COVID-19 will cause a catastrophe due to collateral psychological damage such as quarantine, lockdowns, unemployment, economic collapse, social isolation, violence and suicides [62], [63], [64]. Chronic stress along with hypoxic and hypercapnic conditions knocks the body out of balance, and can cause headaches, fatigue, stomach issues, muscle tension, mood disturbances, insomnia and accelerated aging [47], [48], [65], [66], [67]. This state suppressing the immune system to protect the body from viruses and bacteria, decreasing cognitive function, promoting the developing and exacerbating the major health issues including hypertension, cardiovascular disease, diabetes, cancer, Alzheimer disease, rising anxiety and depression states, causes social isolation and loneliness and increasing the risk for prematurely mortality [47], [48], [51], [56], [66].

Conclusion
The existing scientific evidences challenge the safety and efficacy of wearing facemask as preventive intervention for COVID-19. The data suggest that both medical and non-medical facemasks are ineffective to block human-to-human transmission of viral and infectious disease such SARS-CoV-2 and COVID-19, supporting against the usage of facemasks. Wearing facemasks has been demonstrated to have substantial adverse physiological and psychological effects. These include hypoxia, hypercapnia, shortness of breath, increased acidity and toxicity, activation of fear and stress response, rise in stress hormones, immunosuppression, fatigue, headaches, decline in cognitive performance, predisposition for viral and infectious illnesses, chronic stress, anxiety and depression. Long-term consequences of wearing facemask can cause health deterioration, developing and progression of chronic diseases and premature death. Governments, policy makers and health organizations should utilize prosper and scientific evidence-based approach with respect to wearing facemasks, when the latter is considered as preventive intervention for public health."
You still failed to isolate what exactly you dispute from the article. Posting the entire article does not even demonstrate that you even read and understood it. If you want to win this, you will need to post something from that article that you dispute, and then explain how the part you quoted is flawed or inaccurate. Just so you know, your next post will once again be something besides a quote of something you dispute from the article.
It's the whole article I object to. All of it is a shame. There is no picking out one part. It is all of it. Now, what do you have against the American Medical Association. or Johns Hopkins, or the Mayo Clinic? I've stated my position so, what do you have against actual, real medical websites?
Once again you were unable to isolate even a single item to dispute. Go on now, post your next evasion.
Nope, your turn. What do you have against actual medical websites such as the Mayo Clinic and the AMA?
 
Lefties are going to have to attack the source on this one, since they won't be able to dispute the content.


I do NOT know whether masks help or not.

1. We have been told so often by the powers-that-be that masks do help protect the wearer and/or people near the wearer that probably most of us believe it. Quite possibly it is a placebo that works.

2. We wear them because it gives a sense (maybe a deluded sense) that we can do something to deal with this horrific virus.

3. We wear them to show other people that we are concerned about THEIR well-being, so -- at the very least -- wearing masks is a way of saying "We are all in this together."

4. In a year or so, maybe a definitive answer will be known about their effectiveness or lack thereof. Then that knowledge will be used when the next pandemic hits the world.
 

Forum List

Back
Top