Solar Spectral Shift And Earths Atmospherics

IN late August of 1998 two major solar arrays in the Nevada desert were perplexed by a three to five percent drop in their collected energy. The usual suspects were checked, dirt, rain, clouds, smoke, etc. None of these were identified as the cause.

NASA's ACE space craft had registered a rather odd shift in the solar spectrum which was ignored. It was a shift in energy output drop from 0.2um-0.5um and a corresponding increase around 1.0-1.2um. So subtle that no one even cared, except engineers of solar panels. The band pass of PV panels, which it converts to energy, is primarily in the 0.3 to 0.6 um wave length.

The Cause was a SPECTRAL SHIFT originating on the sun. The energy was simply not making it to earths surface.

How will this type of change affect earths energy balance and its climate engine?

Meh. The Warmers have told us repeatedly that the Sun and Earths magnetic field have no impact on our climate
 
IN late August of 1998 two major solar arrays in the Nevada desert were perplexed by a three to five percent drop in their collected energy. The usual suspects were checked, dirt, rain, clouds, smoke, etc. None of these were identified as the cause.

NASA's ACE space craft had registered a rather odd shift in the solar spectrum which was ignored. It was a shift in energy output drop from 0.2um-0.5um and a corresponding increase around 1.0-1.2um. So subtle that no one even cared, except engineers of solar panels. The band pass of PV panels, which it converts to energy, is primarily in the 0.3 to 0.6 um wave length.

The Cause was a SPECTRAL SHIFT originating on the sun. The energy was simply not making it to earths surface.

How will this type of change affect earths energy balance and its climate engine?

Meh. The Warmers have told us repeatedly that the Sun and Earths magnetic field have no impact on our climate
They would be wrong on about 60 different levels. The solar fusion cycle burns as any nuclear one does, At some point the reaction becomes filled with expended material and it slightly changes the reaction, reducing the high energy output, until it clears. On the sun it is the natural flows which clear the expended material and that takes time.
 
The natural flows?

Our sun is a main sequence star. It's behavior is accurately characterized by the standard stellar model. Given the ratio of mass to luminosity, our sun will turn hydrogen to helium for approximately 12 billion years before switching to a helium - carbon reaction. Given that the sun is less than halfway through its hydrogen cycle, your contention is, once again, completely wrong.

PS, convection is not seen redistributing helium in stars under 2 solar masses.

Main sequence - Wikipedia

References
  1. ^ "The Brightest Stars Don't Live Alone". ESO Press Release. Retrieved 27 July 2012.
  2. ^ Longair, Malcolm S. (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press. pp. 25–26. ISBN 978-0-521-47436-8.
  3. ^ Jump up to:a b Brown, Laurie M.; Pais, Abraham; Pippard, A. B., eds. (1995). Twentieth Century Physics. Bristol; New York: Institute of Physics, American Institute of Physics. p. 1696. ISBN 978-0-7503-0310-1. OCLC 33102501.
  4. ^ Jump up to:a b Russell, H. N. (1913). ""Giant" and "dwarf" stars". The Observatory. 36: 324–329. Bibcode:1913Obs....36..324R.
  5. ^ Strömgren, Bengt (1933). "On the Interpretation of the Hertzsprung-Russell-Diagram". Zeitschrift für Astrophysik. 7: 222–248. Bibcode:1933ZA......7..222S.
  6. ^ Schatzman, Evry L.; Praderie, Francoise (1993). The Stars. Springer. pp. 96–97. ISBN 978-3-540-54196-7.
  7. ^ Morgan, W. W.; Keenan, P. C.; Kellman, E. (1943). An atlas of stellar spectra, with an outline of spectral classification. Chicago, Illinois: The University of Chicago press. Retrieved 2008-08-12.
  8. ^ Jump up to:a b c Unsöld, Albrecht (1969). The New Cosmos. Springer-Verlag New York Inc. p. 268. ISBN 978-0-387-90886-1.
  9. ^ Kelly, Patrick L.; et al. (2 April 2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature. 2 (4): 334–342. arXiv:1706.10279. Bibcode:2018NatAs...2..334K. doi:10.1038/s41550-018-0430-3. Retrieved 2 April 2018.
  10. ^ Howell, Elizabeth (2 April 2018). "Rare Cosmic Alignment Reveals Most Distant Star Ever Seen". Space.com. Retrieved 2 April 2018.
  11. ^ Gloeckler, George; Geiss, Johannes (2004). "Composition of the local interstellar medium as diagnosed with pickup ions". Advances in Space Research. 34 (1): 53–60. Bibcode:2004AdSpR..34...53G. doi:10.1016/j.asr.2003.02.054.
  12. ^ Jump up to:a b c Kroupa, Pavel (2002). "The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems". Science. 295(5552): 82–91. arXiv:astro-ph/0201098. Bibcode:2002Sci...295...82K. doi:10.1126/science.1067524. PMID 11778039. Retrieved 2007-12-03.
  13. ^ Schilling, Govert (2001). "New Model Shows Sun Was a Hot Young Star". Science. 293 (5538): 2188–2189. doi:10.1126/science.293.5538.2188. PMID 11567116. Retrieved 2007-02-04.
  14. ^ "Zero Age Main Sequence". The SAO Encyclopedia of Astronomy. Swinburne University. Retrieved 2007-12-09.
  15. ^ Hansen, Carl J.; Kawaler, Steven D. (1999), Stellar Interiors: Physical Principles, Structure, and Evolution, Astronomy and Astrophysics Library, Springer Science & Business Media, p. 39, ISBN 978-0387941387
  16. ^ Jump up to:a b c d Clayton, Donald D. (1983). Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press. ISBN 978-0-226-10953-4.
  17. ^ "Main Sequence Stars". Australia Telescope Outreach and Education. 25 April 2018. Retrieved 2007-12-04.
  18. ^ Harding E. Smith (21 April 1999). "The Hertzsprung-Russell Diagram". Gene Smith's Astronomy Tutorial. Center for Astrophysics & Space Sciences, University of California, San Diego. Retrieved 2009-10-29.
  19. ^ Richard Powell (2006). "The Hertzsprung Russell Diagram". An Atlas of the Universe. Retrieved 2009-10-29.
  20. ^ Moore, Patrick (2006). The Amateur Astronomer. Springer. ISBN 978-1-85233-878-7.
  21. ^ "White Dwarf". COSMOS—The SAO Encyclopedia of Astronomy. Swinburne University. Retrieved 2007-12-04.
  22. ^ "Origin of the Hertzsprung-Russell Diagram". University of Nebraska. Retrieved 2007-12-06.
  23. ^ "A course on stars' physical properties, formation and evolution" (PDF). University of St. Andrews. Retrieved 2010-05-18.
  24. ^ Siess, Lionel (2000). "Computation of Isochrones". Institut d'Astronomie et d'Astrophysique, Université libre de Bruxelles. Retrieved 2007-12-06.—Compare, for example, the model isochrones generated for a ZAMS of 1.1 solar masses. This is listed in the table as 1.26 times the solar luminosity. At metallicity Z=0.01 the luminosity is 1.34 times solar luminosity. At metallicity Z=0.04 the luminosity is 0.89 times the solar luminosity.
  25. ^ Zombeck, Martin V. (1990). Handbook of Space Astronomy and Astrophysics (2nd ed.). Cambridge University Press. ISBN 978-0-521-34787-7. Retrieved 2007-12-06.
  26. ^ "SIMBAD Astronomical Database". Centre de Données astronomiques de Strasbourg. Retrieved 2008-11-21.
  27. ^ Luck, R. Earle; Heiter, Ulrike (2005). "Stars within 15 Parsecs: Abundances for a Northern Sample". The Astronomical Journal. 129 (2): 1063–1083. Bibcode:2005AJ....129.1063L. doi:10.1086/427250.
  28. ^ "LTT 2151 – High proper-motion Star". Centre de Données astronomiques de Strasbourg. Retrieved 2008-08-12.
  29. ^ Staff (1 January 2008). "List of the Nearest Hundred Nearest Star Systems". Research Consortium on Nearby Stars. Archived from the original on 13 May 2012. Retrieved 2008-08-12.
  30. ^ Jump up to:a b c d Brainerd, Jerome James (16 February 2005). "Main-Sequence Stars". The Astrophysics Spectator. Retrieved 2007-12-04.
  31. ^ Jump up to:a b c Karttunen, Hannu (2003). Fundamental Astronomy. Springer. ISBN 978-3-540-00179-9.
  32. ^ Bahcall, John N.; Pinsonneault, M. H.; Basu, Sarbani (2003). "Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties". The Astrophysical Journal. 555 (2): 990–1012. arXiv:astro-ph/0212331. Bibcode:2003PhRvL..90m1301B. doi:10.1086/321493.
  33. ^ Salaris, Maurizio; Cassisi, Santi (2005). Evolution of Stars and Stellar Populations. John Wiley and Sons. p. 128. ISBN 978-0-470-09220-0.
  34. ^ Oey, M. S.; Clarke, C. J. (2005). "Statistical Confirmation of a Stellar Upper Mass Limit". The Astrophysical Journal. 620 (1): L43–L46. arXiv:astro-ph/0501135. Bibcode:2005ApJ...620L..43O. doi:10.1086/428396.
  35. ^ Ziebarth, Kenneth (1970). "On the Upper Mass Limit for Main-Sequence Stars". Astrophysical Journal. 162: 947–962. Bibcode:1970ApJ...162..947Z. doi:10.1086/150726.
  36. ^ Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I. (March 1993). "An expanded set of brown dwarf and very low mass star models". Astrophysical Journal, Part 1. 406 (1): 158–171. Bibcode:1993ApJ...406..158B. doi:10.1086/172427.
  37. ^ Aller, Lawrence H. (1991). Atoms, Stars, and Nebulae. Cambridge University Press. ISBN 978-0-521-31040-6.
  38. ^ Bressan, A. G.; Chiosi, C.; Bertelli, G. (1981). "Mass loss and overshooting in massive stars". Astronomy and Astrophysics. 102(1): 25–30. Bibcode:1981A&A...102...25B.
  39. ^ Lochner, Jim; Gibb, Meredith; Newman, Phil (6 September 2006). "Stars". NASA. Retrieved 2007-12-05.
  40. ^ Gough, D. O. (1981). "Solar interior structure and luminosity variations". Solar Physics. 74 (1): 21–34. Bibcode:1981SoPh...74...21G. doi:10.1007/BF00151270.
  41. ^ Padmanabhan, Thanu (2001). Theoretical Astrophysics. Cambridge University Press. ISBN 978-0-521-56241-6.
  42. ^ Wright, J. T. (2004). "Do We Know of Any Maunder Minimum Stars?". The Astronomical Journal. 128 (3): 1273–1278. arXiv:astro-ph/0406338. Bibcode:2004AJ....128.1273W. doi:10.1086/423221. Retrieved 2007-12-06.
  43. ^ Tayler, Roger John (1994). The Stars: Their Structure and Evolution. Cambridge University Press. ISBN 978-0-521-45885-6.
  44. ^ Sweet, I. P. A.; Roy, A. E. (1953). "The structure of rotating stars". Monthly Notices of the Royal Astronomical Society. 113(6): 701–715. Bibcode:1953MNRAS.113..701S. doi:10.1093/mnras/113.6.701.
  45. ^ Burgasser, Adam J.; Kirkpatrick, J. Davy; Lepine, Sebastien (5–9 July 2004). Spitzer Studies of Ultracool Subdwarfs: Metal-poor Late-type M, L and T Dwarfs. Proceedings of the 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. Hamburg, Germany: Dordrecht, D. Reidel Publishing Co. p. 237. Retrieved 2007-12-06.
  46. ^ Green, S. F.; Jones, Mark Henry; Burnell, S. Jocelyn (2004). An Introduction to the Sun and Stars. Cambridge University Press. ISBN 978-0-521-54622-5.
  47. ^ Richmond, Michael W. (10 November 2004). "Stellar evolution on the main sequence". Rochester Institute of Technology. Retrieved 2007-12-03.
  48. ^ Jump up to:a b Prialnik, Dina (2000). An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press. ISBN 978-0-521-65937-6.
  49. ^ Schröder, K.-P.; Connon Smith, Robert (May 2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  50. ^ Arnett, David (1996). Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present. Princeton University Press. ISBN 978-0-691-01147-9.—Hydrogen fusion produces 8×1018 erg/g while helium fusion produces 8×1017 erg/g.
  51. ^ For a detailed historical reconstruction of the theoretical derivation of this relationship by Eddington in 1924, see: Lecchini, Stefano (2007). How Dwarfs Became Giants. The Discovery of the Mass-Luminosity Relation. Bern Studies in the History and Philosophy of Science. ISBN 978-3-9522882-6-9.
  52. ^ Jump up to:a b Rolfs, Claus E.; Rodney, William S. (1988). Cauldrons in the Cosmos: Nuclear Astrophysics. University of Chicago Press. ISBN 978-0-226-72457-7.
  53. ^ Sackmann, I.-Juliana; Boothroyd, Arnold I.; Kraemer, Kathleen E. (November 1993). "Our Sun. III. Present and Future". Astrophysical Journal. 418: 457–468. Bibcode:1993ApJ...418..457S. doi:10.1086/173407.
  54. ^ Hansen, Carl J.; Kawaler, Steven D. (1994). Stellar Interiors: Physical Principles, Structure, and Evolution. Birkhäuser. p. 28. ISBN 978-0-387-94138-7.
  55. ^ Laughlin, Gregory; Bodenheimer, Peter; Adams, Fred C. (1997). "The End of the Main Sequence". The Astrophysical Journal. 482(1): 420–432. Bibcode:1997ApJ...482..420L. doi:10.1086/304125.
  56. ^ Imamura, James N. (7 February 1995). "Mass-Luminosity Relationship". University of Oregon. Archived from the original on 14 December 2006. Retrieved 2007-01-08.
  57. ^ Icko Iben (29 November 2012). Stellar Evolution Physics. Cambridge University Press. pp. 1481–. ISBN 978-1-107-01657-6.
  58. ^ Adams, Fred C.; Laughlin, Gregory (April 1997). "A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects". Reviews of Modern Physics. 69 (2): 337–372. arXiv:astro-ph/9701131. Bibcode:1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337.
  59. ^ Staff (12 October 2006). "Post-Main Sequence Stars". Australia Telescope Outreach and Education. Retrieved 2008-01-08.
  60. ^ Girardi, L.; Bressan, A.; Bertelli, G.; Chiosi, C. (2000). "Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 Msun, and from Z=0.0004 to 0.03". Astronomy and Astrophysics Supplement. 141 (3): 371–383. arXiv:astro-ph/9910164. Bibcode:2000A&AS..141..371G. doi:10.1051/aas:2000126.
  61. ^ Sitko, Michael L. (24 March 2000). "Stellar Structure and Evolution". University of Cincinnati. Archived from the originalon 26 March 2005. Retrieved 2007-12-05.
  62. ^ Krauss, Lawrence M.; Chaboyer, Brian (2003). "Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology". Science. 299 (5603): 65–69. Bibcode:2003Sci...299...65K. doi:10.1126/science.1075631. PMID 12511641.
 
The natural flows?

Our sun is a main sequence star. It's behavior is accurately characterized by the standard stellar model. Given the ratio of mass to luminosity, our sun will turn hydrogen to helium for approximately 12 billion years before switching to a helium - carbon reaction. Given that the sun is less than halfway through its hydrogen cycle, your contention is, once again, completely wrong.

PS, convection is not seen redistributing helium in stars under 2 solar masses.

Main sequence - Wikipedia

References[edit]
  1. ^ "The Brightest Stars Don't Live Alone". ESO Press Release. Retrieved 27 July 2012.
  2. ^ Longair, Malcolm S. (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press. pp. 25–26. ISBN 978-0-521-47436-8.
  3. ^ Jump up to:a b Brown, Laurie M.; Pais, Abraham; Pippard, A. B., eds. (1995). Twentieth Century Physics. Bristol; New York: Institute of Physics, American Institute of Physics. p. 1696. ISBN 978-0-7503-0310-1. OCLC 33102501.
  4. ^ Jump up to:a b Russell, H. N. (1913). ""Giant" and "dwarf" stars". The Observatory. 36: 324–329. Bibcode:1913Obs....36..324R.
  5. ^ Strömgren, Bengt (1933). "On the Interpretation of the Hertzsprung-Russell-Diagram". Zeitschrift für Astrophysik. 7: 222–248. Bibcode:1933ZA......7..222S.
  6. ^ Schatzman, Evry L.; Praderie, Francoise (1993). The Stars. Springer. pp. 96–97. ISBN 978-3-540-54196-7.
  7. ^ Morgan, W. W.; Keenan, P. C.; Kellman, E. (1943). An atlas of stellar spectra, with an outline of spectral classification. Chicago, Illinois: The University of Chicago press. Retrieved 2008-08-12.
  8. ^ Jump up to:a b c Unsöld, Albrecht (1969). The New Cosmos. Springer-Verlag New York Inc. p. 268. ISBN 978-0-387-90886-1.
  9. ^ Kelly, Patrick L.; et al. (2 April 2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature. 2 (4): 334–342. arXiv:1706.10279. Bibcode:2018NatAs...2..334K. doi:10.1038/s41550-018-0430-3. Retrieved 2 April 2018.
  10. ^ Howell, Elizabeth (2 April 2018). "Rare Cosmic Alignment Reveals Most Distant Star Ever Seen". Space.com. Retrieved 2 April 2018.
  11. ^ Gloeckler, George; Geiss, Johannes (2004). "Composition of the local interstellar medium as diagnosed with pickup ions". Advances in Space Research. 34 (1): 53–60. Bibcode:2004AdSpR..34...53G. doi:10.1016/j.asr.2003.02.054.
  12. ^ Jump up to:a b c Kroupa, Pavel (2002). "The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems". Science. 295(5552): 82–91. arXiv:astro-ph/0201098. Bibcode:2002Sci...295...82K. doi:10.1126/science.1067524. PMID 11778039. Retrieved 2007-12-03.
  13. ^ Schilling, Govert (2001). "New Model Shows Sun Was a Hot Young Star". Science. 293 (5538): 2188–2189. doi:10.1126/science.293.5538.2188. PMID 11567116. Retrieved 2007-02-04.
  14. ^ "Zero Age Main Sequence". The SAO Encyclopedia of Astronomy. Swinburne University. Retrieved 2007-12-09.
  15. ^ Hansen, Carl J.; Kawaler, Steven D. (1999), Stellar Interiors: Physical Principles, Structure, and Evolution, Astronomy and Astrophysics Library, Springer Science & Business Media, p. 39, ISBN 978-0387941387
  16. ^ Jump up to:a b c d Clayton, Donald D. (1983). Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press. ISBN 978-0-226-10953-4.
  17. ^ "Main Sequence Stars". Australia Telescope Outreach and Education. 25 April 2018. Retrieved 2007-12-04.
  18. ^ Harding E. Smith (21 April 1999). "The Hertzsprung-Russell Diagram". Gene Smith's Astronomy Tutorial. Center for Astrophysics & Space Sciences, University of California, San Diego. Retrieved 2009-10-29.
  19. ^ Richard Powell (2006). "The Hertzsprung Russell Diagram". An Atlas of the Universe. Retrieved 2009-10-29.
  20. ^ Moore, Patrick (2006). The Amateur Astronomer. Springer. ISBN 978-1-85233-878-7.
  21. ^ "White Dwarf". COSMOS—The SAO Encyclopedia of Astronomy. Swinburne University. Retrieved 2007-12-04.
  22. ^ "Origin of the Hertzsprung-Russell Diagram". University of Nebraska. Retrieved 2007-12-06.
  23. ^ "A course on stars' physical properties, formation and evolution" (PDF). University of St. Andrews. Retrieved 2010-05-18.
  24. ^ Siess, Lionel (2000). "Computation of Isochrones". Institut d'Astronomie et d'Astrophysique, Université libre de Bruxelles. Retrieved 2007-12-06.—Compare, for example, the model isochrones generated for a ZAMS of 1.1 solar masses. This is listed in the table as 1.26 times the solar luminosity. At metallicity Z=0.01 the luminosity is 1.34 times solar luminosity. At metallicity Z=0.04 the luminosity is 0.89 times the solar luminosity.
  25. ^ Zombeck, Martin V. (1990). Handbook of Space Astronomy and Astrophysics (2nd ed.). Cambridge University Press. ISBN 978-0-521-34787-7. Retrieved 2007-12-06.
  26. ^ "SIMBAD Astronomical Database". Centre de Données astronomiques de Strasbourg. Retrieved 2008-11-21.
  27. ^ Luck, R. Earle; Heiter, Ulrike (2005). "Stars within 15 Parsecs: Abundances for a Northern Sample". The Astronomical Journal. 129 (2): 1063–1083. Bibcode:2005AJ....129.1063L. doi:10.1086/427250.
  28. ^ "LTT 2151 – High proper-motion Star". Centre de Données astronomiques de Strasbourg. Retrieved 2008-08-12.
  29. ^ Staff (1 January 2008). "List of the Nearest Hundred Nearest Star Systems". Research Consortium on Nearby Stars. Archived from the original on 13 May 2012. Retrieved 2008-08-12.
  30. ^ Jump up to:a b c d Brainerd, Jerome James (16 February 2005). "Main-Sequence Stars". The Astrophysics Spectator. Retrieved 2007-12-04.
  31. ^ Jump up to:a b c Karttunen, Hannu (2003). Fundamental Astronomy. Springer. ISBN 978-3-540-00179-9.
  32. ^ Bahcall, John N.; Pinsonneault, M. H.; Basu, Sarbani (2003). "Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties". The Astrophysical Journal. 555 (2): 990–1012. arXiv:astro-ph/0212331. Bibcode:2003PhRvL..90m1301B. doi:10.1086/321493.
  33. ^ Salaris, Maurizio; Cassisi, Santi (2005). Evolution of Stars and Stellar Populations. John Wiley and Sons. p. 128. ISBN 978-0-470-09220-0.
  34. ^ Oey, M. S.; Clarke, C. J. (2005). "Statistical Confirmation of a Stellar Upper Mass Limit". The Astrophysical Journal. 620 (1): L43–L46. arXiv:astro-ph/0501135. Bibcode:2005ApJ...620L..43O. doi:10.1086/428396.
  35. ^ Ziebarth, Kenneth (1970). "On the Upper Mass Limit for Main-Sequence Stars". Astrophysical Journal. 162: 947–962. Bibcode:1970ApJ...162..947Z. doi:10.1086/150726.
  36. ^ Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I. (March 1993). "An expanded set of brown dwarf and very low mass star models". Astrophysical Journal, Part 1. 406 (1): 158–171. Bibcode:1993ApJ...406..158B. doi:10.1086/172427.
  37. ^ Aller, Lawrence H. (1991). Atoms, Stars, and Nebulae. Cambridge University Press. ISBN 978-0-521-31040-6.
  38. ^ Bressan, A. G.; Chiosi, C.; Bertelli, G. (1981). "Mass loss and overshooting in massive stars". Astronomy and Astrophysics. 102(1): 25–30. Bibcode:1981A&A...102...25B.
  39. ^ Lochner, Jim; Gibb, Meredith; Newman, Phil (6 September 2006). "Stars". NASA. Retrieved 2007-12-05.
  40. ^ Gough, D. O. (1981). "Solar interior structure and luminosity variations". Solar Physics. 74 (1): 21–34. Bibcode:1981SoPh...74...21G. doi:10.1007/BF00151270.
  41. ^ Padmanabhan, Thanu (2001). Theoretical Astrophysics. Cambridge University Press. ISBN 978-0-521-56241-6.
  42. ^ Wright, J. T. (2004). "Do We Know of Any Maunder Minimum Stars?". The Astronomical Journal. 128 (3): 1273–1278. arXiv:astro-ph/0406338. Bibcode:2004AJ....128.1273W. doi:10.1086/423221. Retrieved 2007-12-06.
  43. ^ Tayler, Roger John (1994). The Stars: Their Structure and Evolution. Cambridge University Press. ISBN 978-0-521-45885-6.
  44. ^ Sweet, I. P. A.; Roy, A. E. (1953). "The structure of rotating stars". Monthly Notices of the Royal Astronomical Society. 113(6): 701–715. Bibcode:1953MNRAS.113..701S. doi:10.1093/mnras/113.6.701.
  45. ^ Burgasser, Adam J.; Kirkpatrick, J. Davy; Lepine, Sebastien (5–9 July 2004). Spitzer Studies of Ultracool Subdwarfs: Metal-poor Late-type M, L and T Dwarfs. Proceedings of the 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. Hamburg, Germany: Dordrecht, D. Reidel Publishing Co. p. 237. Retrieved 2007-12-06.
  46. ^ Green, S. F.; Jones, Mark Henry; Burnell, S. Jocelyn (2004). An Introduction to the Sun and Stars. Cambridge University Press. ISBN 978-0-521-54622-5.
  47. ^ Richmond, Michael W. (10 November 2004). "Stellar evolution on the main sequence". Rochester Institute of Technology. Retrieved 2007-12-03.
  48. ^ Jump up to:a b Prialnik, Dina (2000). An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press. ISBN 978-0-521-65937-6.
  49. ^ Schröder, K.-P.; Connon Smith, Robert (May 2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  50. ^ Arnett, David (1996). Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present. Princeton University Press. ISBN 978-0-691-01147-9.—Hydrogen fusion produces 8×1018 erg/g while helium fusion produces 8×1017 erg/g.
  51. ^ For a detailed historical reconstruction of the theoretical derivation of this relationship by Eddington in 1924, see: Lecchini, Stefano (2007). How Dwarfs Became Giants. The Discovery of the Mass-Luminosity Relation. Bern Studies in the History and Philosophy of Science. ISBN 978-3-9522882-6-9.
  52. ^ Jump up to:a b Rolfs, Claus E.; Rodney, William S. (1988). Cauldrons in the Cosmos: Nuclear Astrophysics. University of Chicago Press. ISBN 978-0-226-72457-7.
  53. ^ Sackmann, I.-Juliana; Boothroyd, Arnold I.; Kraemer, Kathleen E. (November 1993). "Our Sun. III. Present and Future". Astrophysical Journal. 418: 457–468. Bibcode:1993ApJ...418..457S. doi:10.1086/173407.
  54. ^ Hansen, Carl J.; Kawaler, Steven D. (1994). Stellar Interiors: Physical Principles, Structure, and Evolution. Birkhäuser. p. 28. ISBN 978-0-387-94138-7.
  55. ^ Laughlin, Gregory; Bodenheimer, Peter; Adams, Fred C. (1997). "The End of the Main Sequence". The Astrophysical Journal. 482(1): 420–432. Bibcode:1997ApJ...482..420L. doi:10.1086/304125.
  56. ^ Imamura, James N. (7 February 1995). "Mass-Luminosity Relationship". University of Oregon. Archived from the original on 14 December 2006. Retrieved 2007-01-08.
  57. ^ Icko Iben (29 November 2012). Stellar Evolution Physics. Cambridge University Press. pp. 1481–. ISBN 978-1-107-01657-6.
  58. ^ Adams, Fred C.; Laughlin, Gregory (April 1997). "A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects". Reviews of Modern Physics. 69 (2): 337–372. arXiv:astro-ph/9701131. Bibcode:1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337.
  59. ^ Staff (12 October 2006). "Post-Main Sequence Stars". Australia Telescope Outreach and Education. Retrieved 2008-01-08.
  60. ^ Girardi, L.; Bressan, A.; Bertelli, G.; Chiosi, C. (2000). "Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 Msun, and from Z=0.0004 to 0.03". Astronomy and Astrophysics Supplement. 141 (3): 371–383. arXiv:astro-ph/9910164. Bibcode:2000A&AS..141..371G. doi:10.1051/aas:2000126.
  61. ^ Sitko, Michael L. (24 March 2000). "Stellar Structure and Evolution". University of Cincinnati. Archived from the originalon 26 March 2005. Retrieved 2007-12-05.
  62. ^ Krauss, Lawrence M.; Chaboyer, Brian (2003). "Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology". Science. 299 (5603): 65–69. Bibcode:2003Sci...299...65K. doi:10.1126/science.1075631. PMID 12511641.

More assumptions based on models....little wonder you are a dupe...
 
Perhaps aliens are diverting a portion of the sun's radiant energy into a wormhole so they can use it for their own solar system to control global warming we caused on their planet? So they are giving us a carbon tax.

sun graph.jpg
 
The natural flows?

Our sun is a main sequence star. It's behavior is accurately characterized by the standard stellar model. Given the ratio of mass to luminosity, our sun will turn hydrogen to helium for approximately 12 billion years before switching to a helium - carbon reaction. Given that the sun is less than halfway through its hydrogen cycle, your contention is, once again, completely wrong.

PS, convection is not seen redistributing helium in stars under 2 solar masses.

Main sequence - Wikipedia

References
  1. ^ "The Brightest Stars Don't Live Alone". ESO Press Release. Retrieved 27 July 2012.
  2. ^ Longair, Malcolm S. (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press. pp. 25–26. ISBN 978-0-521-47436-8.
  3. ^ Jump up to:a b Brown, Laurie M.; Pais, Abraham; Pippard, A. B., eds. (1995). Twentieth Century Physics. Bristol; New York: Institute of Physics, American Institute of Physics. p. 1696. ISBN 978-0-7503-0310-1. OCLC 33102501.
  4. ^ Jump up to:a b Russell, H. N. (1913). ""Giant" and "dwarf" stars". The Observatory. 36: 324–329. Bibcode:1913Obs....36..324R.
  5. ^ Strömgren, Bengt (1933). "On the Interpretation of the Hertzsprung-Russell-Diagram". Zeitschrift für Astrophysik. 7: 222–248. Bibcode:1933ZA......7..222S.
  6. ^ Schatzman, Evry L.; Praderie, Francoise (1993). The Stars. Springer. pp. 96–97. ISBN 978-3-540-54196-7.
  7. ^ Morgan, W. W.; Keenan, P. C.; Kellman, E. (1943). An atlas of stellar spectra, with an outline of spectral classification. Chicago, Illinois: The University of Chicago press. Retrieved 2008-08-12.
  8. ^ Jump up to:a b c Unsöld, Albrecht (1969). The New Cosmos. Springer-Verlag New York Inc. p. 268. ISBN 978-0-387-90886-1.
  9. ^ Kelly, Patrick L.; et al. (2 April 2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature. 2 (4): 334–342. arXiv:1706.10279. Bibcode:2018NatAs...2..334K. doi:10.1038/s41550-018-0430-3. Retrieved 2 April 2018.
  10. ^ Howell, Elizabeth (2 April 2018). "Rare Cosmic Alignment Reveals Most Distant Star Ever Seen". Space.com. Retrieved 2 April 2018.
  11. ^ Gloeckler, George; Geiss, Johannes (2004). "Composition of the local interstellar medium as diagnosed with pickup ions". Advances in Space Research. 34 (1): 53–60. Bibcode:2004AdSpR..34...53G. doi:10.1016/j.asr.2003.02.054.
  12. ^ Jump up to:a b c Kroupa, Pavel (2002). "The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems". Science. 295(5552): 82–91. arXiv:astro-ph/0201098. Bibcode:2002Sci...295...82K. doi:10.1126/science.1067524. PMID 11778039. Retrieved 2007-12-03.
  13. ^ Schilling, Govert (2001). "New Model Shows Sun Was a Hot Young Star". Science. 293 (5538): 2188–2189. doi:10.1126/science.293.5538.2188. PMID 11567116. Retrieved 2007-02-04.
  14. ^ "Zero Age Main Sequence". The SAO Encyclopedia of Astronomy. Swinburne University. Retrieved 2007-12-09.
  15. ^ Hansen, Carl J.; Kawaler, Steven D. (1999), Stellar Interiors: Physical Principles, Structure, and Evolution, Astronomy and Astrophysics Library, Springer Science & Business Media, p. 39, ISBN 978-0387941387
  16. ^ Jump up to:a b c d Clayton, Donald D. (1983). Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press. ISBN 978-0-226-10953-4.
  17. ^ "Main Sequence Stars". Australia Telescope Outreach and Education. 25 April 2018. Retrieved 2007-12-04.
  18. ^ Harding E. Smith (21 April 1999). "The Hertzsprung-Russell Diagram". Gene Smith's Astronomy Tutorial. Center for Astrophysics & Space Sciences, University of California, San Diego. Retrieved 2009-10-29.
  19. ^ Richard Powell (2006). "The Hertzsprung Russell Diagram". An Atlas of the Universe. Retrieved 2009-10-29.
  20. ^ Moore, Patrick (2006). The Amateur Astronomer. Springer. ISBN 978-1-85233-878-7.
  21. ^ "White Dwarf". COSMOS—The SAO Encyclopedia of Astronomy. Swinburne University. Retrieved 2007-12-04.
  22. ^ "Origin of the Hertzsprung-Russell Diagram". University of Nebraska. Retrieved 2007-12-06.
  23. ^ "A course on stars' physical properties, formation and evolution" (PDF). University of St. Andrews. Retrieved 2010-05-18.
  24. ^ Siess, Lionel (2000). "Computation of Isochrones". Institut d'Astronomie et d'Astrophysique, Université libre de Bruxelles. Retrieved 2007-12-06.—Compare, for example, the model isochrones generated for a ZAMS of 1.1 solar masses. This is listed in the table as 1.26 times the solar luminosity. At metallicity Z=0.01 the luminosity is 1.34 times solar luminosity. At metallicity Z=0.04 the luminosity is 0.89 times the solar luminosity.
  25. ^ Zombeck, Martin V. (1990). Handbook of Space Astronomy and Astrophysics (2nd ed.). Cambridge University Press. ISBN 978-0-521-34787-7. Retrieved 2007-12-06.
  26. ^ "SIMBAD Astronomical Database". Centre de Données astronomiques de Strasbourg. Retrieved 2008-11-21.
  27. ^ Luck, R. Earle; Heiter, Ulrike (2005). "Stars within 15 Parsecs: Abundances for a Northern Sample". The Astronomical Journal. 129 (2): 1063–1083. Bibcode:2005AJ....129.1063L. doi:10.1086/427250.
  28. ^ "LTT 2151 – High proper-motion Star". Centre de Données astronomiques de Strasbourg. Retrieved 2008-08-12.
  29. ^ Staff (1 January 2008). "List of the Nearest Hundred Nearest Star Systems". Research Consortium on Nearby Stars. Archived from the original on 13 May 2012. Retrieved 2008-08-12.
  30. ^ Jump up to:a b c d Brainerd, Jerome James (16 February 2005). "Main-Sequence Stars". The Astrophysics Spectator. Retrieved 2007-12-04.
  31. ^ Jump up to:a b c Karttunen, Hannu (2003). Fundamental Astronomy. Springer. ISBN 978-3-540-00179-9.
  32. ^ Bahcall, John N.; Pinsonneault, M. H.; Basu, Sarbani (2003). "Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties". The Astrophysical Journal. 555 (2): 990–1012. arXiv:astro-ph/0212331. Bibcode:2003PhRvL..90m1301B. doi:10.1086/321493.
  33. ^ Salaris, Maurizio; Cassisi, Santi (2005). Evolution of Stars and Stellar Populations. John Wiley and Sons. p. 128. ISBN 978-0-470-09220-0.
  34. ^ Oey, M. S.; Clarke, C. J. (2005). "Statistical Confirmation of a Stellar Upper Mass Limit". The Astrophysical Journal. 620 (1): L43–L46. arXiv:astro-ph/0501135. Bibcode:2005ApJ...620L..43O. doi:10.1086/428396.
  35. ^ Ziebarth, Kenneth (1970). "On the Upper Mass Limit for Main-Sequence Stars". Astrophysical Journal. 162: 947–962. Bibcode:1970ApJ...162..947Z. doi:10.1086/150726.
  36. ^ Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I. (March 1993). "An expanded set of brown dwarf and very low mass star models". Astrophysical Journal, Part 1. 406 (1): 158–171. Bibcode:1993ApJ...406..158B. doi:10.1086/172427.
  37. ^ Aller, Lawrence H. (1991). Atoms, Stars, and Nebulae. Cambridge University Press. ISBN 978-0-521-31040-6.
  38. ^ Bressan, A. G.; Chiosi, C.; Bertelli, G. (1981). "Mass loss and overshooting in massive stars". Astronomy and Astrophysics. 102(1): 25–30. Bibcode:1981A&A...102...25B.
  39. ^ Lochner, Jim; Gibb, Meredith; Newman, Phil (6 September 2006). "Stars". NASA. Retrieved 2007-12-05.
  40. ^ Gough, D. O. (1981). "Solar interior structure and luminosity variations". Solar Physics. 74 (1): 21–34. Bibcode:1981SoPh...74...21G. doi:10.1007/BF00151270.
  41. ^ Padmanabhan, Thanu (2001). Theoretical Astrophysics. Cambridge University Press. ISBN 978-0-521-56241-6.
  42. ^ Wright, J. T. (2004). "Do We Know of Any Maunder Minimum Stars?". The Astronomical Journal. 128 (3): 1273–1278. arXiv:astro-ph/0406338. Bibcode:2004AJ....128.1273W. doi:10.1086/423221. Retrieved 2007-12-06.
  43. ^ Tayler, Roger John (1994). The Stars: Their Structure and Evolution. Cambridge University Press. ISBN 978-0-521-45885-6.
  44. ^ Sweet, I. P. A.; Roy, A. E. (1953). "The structure of rotating stars". Monthly Notices of the Royal Astronomical Society. 113(6): 701–715. Bibcode:1953MNRAS.113..701S. doi:10.1093/mnras/113.6.701.
  45. ^ Burgasser, Adam J.; Kirkpatrick, J. Davy; Lepine, Sebastien (5–9 July 2004). Spitzer Studies of Ultracool Subdwarfs: Metal-poor Late-type M, L and T Dwarfs. Proceedings of the 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. Hamburg, Germany: Dordrecht, D. Reidel Publishing Co. p. 237. Retrieved 2007-12-06.
  46. ^ Green, S. F.; Jones, Mark Henry; Burnell, S. Jocelyn (2004). An Introduction to the Sun and Stars. Cambridge University Press. ISBN 978-0-521-54622-5.
  47. ^ Richmond, Michael W. (10 November 2004). "Stellar evolution on the main sequence". Rochester Institute of Technology. Retrieved 2007-12-03.
  48. ^ Jump up to:a b Prialnik, Dina (2000). An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press. ISBN 978-0-521-65937-6.
  49. ^ Schröder, K.-P.; Connon Smith, Robert (May 2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  50. ^ Arnett, David (1996). Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present. Princeton University Press. ISBN 978-0-691-01147-9.—Hydrogen fusion produces 8×1018 erg/g while helium fusion produces 8×1017 erg/g.
  51. ^ For a detailed historical reconstruction of the theoretical derivation of this relationship by Eddington in 1924, see: Lecchini, Stefano (2007). How Dwarfs Became Giants. The Discovery of the Mass-Luminosity Relation. Bern Studies in the History and Philosophy of Science. ISBN 978-3-9522882-6-9.
  52. ^ Jump up to:a b Rolfs, Claus E.; Rodney, William S. (1988). Cauldrons in the Cosmos: Nuclear Astrophysics. University of Chicago Press. ISBN 978-0-226-72457-7.
  53. ^ Sackmann, I.-Juliana; Boothroyd, Arnold I.; Kraemer, Kathleen E. (November 1993). "Our Sun. III. Present and Future". Astrophysical Journal. 418: 457–468. Bibcode:1993ApJ...418..457S. doi:10.1086/173407.
  54. ^ Hansen, Carl J.; Kawaler, Steven D. (1994). Stellar Interiors: Physical Principles, Structure, and Evolution. Birkhäuser. p. 28. ISBN 978-0-387-94138-7.
  55. ^ Laughlin, Gregory; Bodenheimer, Peter; Adams, Fred C. (1997). "The End of the Main Sequence". The Astrophysical Journal. 482(1): 420–432. Bibcode:1997ApJ...482..420L. doi:10.1086/304125.
  56. ^ Imamura, James N. (7 February 1995). "Mass-Luminosity Relationship". University of Oregon. Archived from the original on 14 December 2006. Retrieved 2007-01-08.
  57. ^ Icko Iben (29 November 2012). Stellar Evolution Physics. Cambridge University Press. pp. 1481–. ISBN 978-1-107-01657-6.
  58. ^ Adams, Fred C.; Laughlin, Gregory (April 1997). "A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects". Reviews of Modern Physics. 69 (2): 337–372. arXiv:astro-ph/9701131. Bibcode:1997RvMP...69..337A. doi:10.1103/RevModPhys.69.337.
  59. ^ Staff (12 October 2006). "Post-Main Sequence Stars". Australia Telescope Outreach and Education. Retrieved 2008-01-08.
  60. ^ Girardi, L.; Bressan, A.; Bertelli, G.; Chiosi, C. (2000). "Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 Msun, and from Z=0.0004 to 0.03". Astronomy and Astrophysics Supplement. 141 (3): 371–383. arXiv:astro-ph/9910164. Bibcode:2000A&AS..141..371G. doi:10.1051/aas:2000126.
  61. ^ Sitko, Michael L. (24 March 2000). "Stellar Structure and Evolution". University of Cincinnati. Archived from the originalon 26 March 2005. Retrieved 2007-12-05.
  62. ^ Krauss, Lawrence M.; Chaboyer, Brian (2003). "Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology". Science. 299 (5603): 65–69. Bibcode:2003Sci...299...65K. doi:10.1126/science.1075631. PMID 12511641.
Nice cut and paste...

You will never learn that I deal in facts the can be seen and documented (Empirical Evidence). Every reaction like these react in similar ways. I will take the empirical evidence over your failed models every day of the week.

Here is one written for first year physicists. I hope its not to deep for your 6 year old level.
Nuclear Fusion in the Sun Explained Perfectly by Science

Maybe you can explain the difference between a P-P and P-E-P reaction and why our sun vasolates between these two reactions.
 
Last edited:
What I posted was extracted from the Wikipedia article to which I linked. It was not a cut and paste. You cited NOTHING to support your contentions and the FACTS I put up show you to be incorrect. If you disagree, post up supporting evidence that the sun's output, in power or spectrum shifts as a result of a buildup of "expended material". And what the fuck is that supposed to be anyway? Hydrogen ash?
 
What I posted was extracted from the Wikipedia article to which I linked. It was not a cut and paste. You cited NOTHING to support your contentions and the FACTS I put up show you to be incorrect. If you disagree, post up supporting evidence that the sun's output, in power or spectrum shifts as a result of a buildup of "expended material". And what the fuck is that supposed to be anyway? Hydrogen ash?
Extracting from an article is not cutting and pasting? Who knew? Lol, I've seen a few times how the people at w-pedia distort things. They are no more trustworthy than any other media source.
 
The words I posted are my own. That is not cut and paste. Multiple studies have shown Wikipedia to be at LEAST as reliable as Encyclopedia Britannica.
 
The words I posted are my own. That is not cut and paste. Multiple studies have shown Wikipedia to be at LEAST as reliable as Encyclopedia Britannica.
Studies by who? You guys are so gullible.
 
Meanwhile small changes in the Sun output appears to have significant impact on the ocean waters, hence climate:

From NASA

Solar Variability and Terrestrial Climate

Excerpt:

Jan. 8, 2013: In the galactic scheme of things, the Sun is a remarkably constant star. While some stars exhibit dramatic pulsations, wildly yo-yoing in size and brightness, and sometimes even exploding, the luminosity of our own sun varies a measly 0.1% over the course of the 11-year solar cycle.

There is, however, a dawning realization among researchers that even these apparently tiny variations can have a significant effect on terrestrial climate. A new report issued by the National Research Council (NRC), "The Effects of Solar Variability on Earth's Climate," lays out some of the surprisingly complex ways that solar activity can make itself felt on our planet.

LINK

======================

This is but one of many solar studies that makes clear they have a profound effect on the planets weather and climate cycles.
 
Meanwhile small changes in the Sun output appears to have significant impact on the ocean waters, hence climate:

From NASA

Solar Variability and Terrestrial Climate

Excerpt:

Jan. 8, 2013: In the galactic scheme of things, the Sun is a remarkably constant star. While some stars exhibit dramatic pulsations, wildly yo-yoing in size and brightness, and sometimes even exploding, the luminosity of our own sun varies a measly 0.1% over the course of the 11-year solar cycle.

There is, however, a dawning realization among researchers that even these apparently tiny variations can have a significant effect on terrestrial climate. A new report issued by the National Research Council (NRC), "The Effects of Solar Variability on Earth's Climate," lays out some of the surprisingly complex ways that solar activity can make itself felt on our planet.

LINK

======================

This is but one of many solar studies that makes clear they have a profound effect on the planets weather and climate cycles.
This was the awakening moment over at the NRC that spectral shift could have devastating impacts and not affect TSI very much.. It was the moment when they began to look at how our atmosphere actually reacts to the energy passing through it.

The reaction by the alarmists was predictable as it smashed their "science is settled" narrative.
 
The reaction by the alarmists was predictable as it smashed their "science is settled" narrative.

You've been predicting "ICE AGE ANY DAY!" non-stop for at least the past 5 years. Your ice age cult has been predicting it nonstop for over 40 years.

Yet your HolyIceAge never arrives. And it never will arrive. It just keeps on warming strongly, as all the normal people predicted.

Doesn't that dampen your fanatical religious zeal just a bit? Or is your blind faith in the inevitability of the HolyIceAge still undiminished?
 
The reaction by the alarmists was predictable as it smashed their "science is settled" narrative.

You've been predicting "ICE AGE ANY DAY!" non-stop for at least the past 5 years. Your ice age cult has been predicting it nonstop for over 40 years.

Yet your HolyIceAge never arrives. And it never will arrive. It just keeps on warming strongly, as all the normal people predicted.

Doesn't that dampen your fanatical religious zeal just a bit? Or is your blind faith in the inevitability of the HolyIceAge still undiminished?

Exactly how quickly do you suppose the ocean can give up its heat hairball? Since it is the oceans that regulate the temperature on earth.
 
The reaction by the alarmists was predictable as it smashed their "science is settled" narrative.

You've been predicting "ICE AGE ANY DAY!" non-stop for at least the past 5 years. Your ice age cult has been predicting it nonstop for over 40 years.

Yet your HolyIceAge never arrives. And it never will arrive. It just keeps on warming strongly, as all the normal people predicted.

Doesn't that dampen your fanatical religious zeal just a bit? Or is your blind faith in the inevitability of the HolyIceAge still undiminished?

Exactly how quickly do you suppose the ocean can give up its heat hairball? Since it is the oceans that regulate the temperature on earth.
15-20 years is the average according to most Oceanic people I Know as only the surface impacts the atmosphere. With the surface now cooling off rapidly the atmosphere will follow.
 

New Topics

Forum List

Back
Top