New nuclear reactors set to be OK'd for Georgia

bripat9643

Diamond Member
Apr 1, 2011
169,942
47,187
2,180
New nuclear reactors set to be OK'd for Georgia - Feb. 8, 2012

The U.S. Nuclear Regulatory Commission is expected to approve licenses to build two new nuclear reactors Thursday, the first approvals in over 30 years. The reactors are being built in Georgia by a consortium of utilities led by Southern Co. They will be sited at the Vogtle nuclear power plant complex, about 170 miles east of Atlanta. The plant already houses two older reactors. Spokespeople for Southern Co. and the NRC were quiet on the matter Wednesday ahead of the vote set for Thursday at 12 PM ET. If approved, NRC staff would likely issue a construction and operating license...
 
“Several federal government studies suggest that this extreme solar activity and emissions may result in complete blackouts for years in some areas of the nation. Moreover, there may also be disruption of power supply for years, or even decades, as geomagnetic currents attracted by the storm could debilitate the transformers.”

Why does all this matter? To understand that, you have to understand how nuclear power plants function. Or, put another way, how is nuclear material prevented from “going nuclear” every single day across our planet?

Every nuclear power plant operates in a near-meltdown state

All nuclear power plants are operated in a near-meltdown status. They operate at very high heat, relying on nuclear fission to boil water that produces steam to drive the turbines that generate electricity. Critically, the nuclear fuel is prevented from melting down through the steady circulation of coolants which are pushed through the cooling system using very high powered electric pumps.

If you stop the electric pumps, the coolant stops flowing and the fuel rods go critical (and then melt down). This is what happened in Fukushima, where the melted fuel rods dropped through the concrete floor of the containment vessels, unleashing enormous quantities of ionizing radiation into the surrounding environment. The full extent of the Fukushima contamination is not even known yet, as the facility is still emitting radiation.

It’s crucial to understand that nuclear coolant pumps are usually driven by power from the electrical grid. They are not normally driven by power generated locally from the nuclear power plant itself. Instead, they’re connected to the grid. In other words, even though nuclear power plants are generating megawatts of electricity for the grid, they are also dependant on the grid to run their own coolant pumps. If the grid goes down, the coolant pumps go down, too, which is why they are quickly switched to emergency backup power — either generators or batteries.

As we learned with Fukushima, the on-site batteries can only drive the coolant pumps for around eight hours. After that, the nuclear facility is dependent on diesel generators (or sometimes propane) to run the pumps that circulate the coolant which prevents the whole site from going Chernobyl. And yet, critically, this depends on something rather obvious: The delivery of diesel fuel to the site. If diesel cannot be delivered, the generators can’t be fired up and the coolant can’t be circulated. When you grasp the importance of this supply line dependency, you will instantly understand why a single solar flare could unleash a nuclear holocaust across the planet.

When the generators fail and the coolant pumps stop pumping, nuclear fuel rods begin to melt through their containment rods, unleashing ungodly amounts of life-destroying radiation directly into the atmosphere. This is precisely why Japanese engineers worked so hard to reconnect the local power grid to the Fukushima facility after the tidal wave — they needed to bring power back to the generators to run the pumps that circulate the coolant. This effort failed, of course, which is why Fukushima became such a nuclear disaster and released countless becquerels of radiation into the environment (with no end in sight).

And yet, despite the destruction we’ve already seen with Fukushima, U.S. nuclear power plants are nowhere near being prepared to handle sustained power grid failures. As IBtimes reports:

“Last month, the Nuclear Regulatory Commission said U.S. plants affected by a blackout should be able to cope without electricity for at least eight hours and should have procedures to keep the reactor and spent-fuel pool cool for 72 hours. Nuclear plants depend on standby batteries and backup diesel generators. Most standby power systems would continue to function after a severe solar storm, but supplying the standby power systems with adequate fuel, when the main power grids are offline for years, could become a very critical problem. If the spent fuel rod pools at the country’s 104 nuclear power plants lose their connection to the power grid, the current regulations aren’t sufficient to guarantee those pools won’t boil over — exposing the hot, zirconium-clad rods and sparking fires that would release deadly radiation.”

Solar flare could unleash nuclear holocaust across planet Earth - Project Nsearch
 
New nuclear reactors set to be OK'd for Georgia - Feb. 8, 2012

The U.S. Nuclear Regulatory Commission is expected to approve licenses to build two new nuclear reactors Thursday, the first approvals in over 30 years. The reactors are being built in Georgia by a consortium of utilities led by Southern Co. They will be sited at the Vogtle nuclear power plant complex, about 170 miles east of Atlanta. The plant already houses two older reactors. Spokespeople for Southern Co. and the NRC were quiet on the matter Wednesday ahead of the vote set for Thursday at 12 PM ET. If approved, NRC staff would likely issue a construction and operating license...

Great news.
 
You're a complete nutburger, ya know it?

“Several federal government studies suggest that this extreme solar activity and emissions may result in complete blackouts for years in some areas of the nation. Moreover, there may also be disruption of power supply for years, or even decades, as geomagnetic currents attracted by the storm could debilitate the transformers.”

Why does all this matter? To understand that, you have to understand how nuclear power plants function. Or, put another way, how is nuclear material prevented from “going nuclear” every single day across our planet?

Every nuclear power plant operates in a near-meltdown state

All nuclear power plants are operated in a near-meltdown status. They operate at very high heat, relying on nuclear fission to boil water that produces steam to drive the turbines that generate electricity. Critically, the nuclear fuel is prevented from melting down through the steady circulation of coolants which are pushed through the cooling system using very high powered electric pumps.

If you stop the electric pumps, the coolant stops flowing and the fuel rods go critical (and then melt down). This is what happened in Fukushima, where the melted fuel rods dropped through the concrete floor of the containment vessels, unleashing enormous quantities of ionizing radiation into the surrounding environment. The full extent of the Fukushima contamination is not even known yet, as the facility is still emitting radiation.

It’s crucial to understand that nuclear coolant pumps are usually driven by power from the electrical grid. They are not normally driven by power generated locally from the nuclear power plant itself. Instead, they’re connected to the grid. In other words, even though nuclear power plants are generating megawatts of electricity for the grid, they are also dependant on the grid to run their own coolant pumps. If the grid goes down, the coolant pumps go down, too, which is why they are quickly switched to emergency backup power — either generators or batteries.

As we learned with Fukushima, the on-site batteries can only drive the coolant pumps for around eight hours. After that, the nuclear facility is dependent on diesel generators (or sometimes propane) to run the pumps that circulate the coolant which prevents the whole site from going Chernobyl. And yet, critically, this depends on something rather obvious: The delivery of diesel fuel to the site. If diesel cannot be delivered, the generators can’t be fired up and the coolant can’t be circulated. When you grasp the importance of this supply line dependency, you will instantly understand why a single solar flare could unleash a nuclear holocaust across the planet.

When the generators fail and the coolant pumps stop pumping, nuclear fuel rods begin to melt through their containment rods, unleashing ungodly amounts of life-destroying radiation directly into the atmosphere. This is precisely why Japanese engineers worked so hard to reconnect the local power grid to the Fukushima facility after the tidal wave — they needed to bring power back to the generators to run the pumps that circulate the coolant. This effort failed, of course, which is why Fukushima became such a nuclear disaster and released countless becquerels of radiation into the environment (with no end in sight).

And yet, despite the destruction we’ve already seen with Fukushima, U.S. nuclear power plants are nowhere near being prepared to handle sustained power grid failures. As IBtimes reports:

“Last month, the Nuclear Regulatory Commission said U.S. plants affected by a blackout should be able to cope without electricity for at least eight hours and should have procedures to keep the reactor and spent-fuel pool cool for 72 hours. Nuclear plants depend on standby batteries and backup diesel generators. Most standby power systems would continue to function after a severe solar storm, but supplying the standby power systems with adequate fuel, when the main power grids are offline for years, could become a very critical problem. If the spent fuel rod pools at the country’s 104 nuclear power plants lose their connection to the power grid, the current regulations aren’t sufficient to guarantee those pools won’t boil over — exposing the hot, zirconium-clad rods and sparking fires that would release deadly radiation.”

Solar flare could unleash nuclear holocaust across planet Earth - Project Nsearch
 
We've had nuclear power on our ships for decades with no accidents. As long as you bring that sort of precision to the practice of nuclear power, there is no reason it can't be safe outside of a total natural calamity. And if we're scared of total natural calamities, we all may as well put on the jumpsuits and join Heaven's Gate. The left needs to embrace nuclear.
 
You're a complete nutburger, ya know it?

“Several federal government studies suggest that this extreme solar activity and emissions may result in complete blackouts for years in some areas of the nation. Moreover, there may also be disruption of power supply for years, or even decades, as geomagnetic currents attracted by the storm could debilitate the transformers.”

Why does all this matter? To understand that, you have to understand how nuclear power plants function. Or, put another way, how is nuclear material prevented from “going nuclear” every single day across our planet?

Every nuclear power plant operates in a near-meltdown state

All nuclear power plants are operated in a near-meltdown status. They operate at very high heat, relying on nuclear fission to boil water that produces steam to drive the turbines that generate electricity. Critically, the nuclear fuel is prevented from melting down through the steady circulation of coolants which are pushed through the cooling system using very high powered electric pumps.

If you stop the electric pumps, the coolant stops flowing and the fuel rods go critical (and then melt down). This is what happened in Fukushima, where the melted fuel rods dropped through the concrete floor of the containment vessels, unleashing enormous quantities of ionizing radiation into the surrounding environment. The full extent of the Fukushima contamination is not even known yet, as the facility is still emitting radiation.

It’s crucial to understand that nuclear coolant pumps are usually driven by power from the electrical grid. They are not normally driven by power generated locally from the nuclear power plant itself. Instead, they’re connected to the grid. In other words, even though nuclear power plants are generating megawatts of electricity for the grid, they are also dependant on the grid to run their own coolant pumps. If the grid goes down, the coolant pumps go down, too, which is why they are quickly switched to emergency backup power — either generators or batteries.

As we learned with Fukushima, the on-site batteries can only drive the coolant pumps for around eight hours. After that, the nuclear facility is dependent on diesel generators (or sometimes propane) to run the pumps that circulate the coolant which prevents the whole site from going Chernobyl. And yet, critically, this depends on something rather obvious: The delivery of diesel fuel to the site. If diesel cannot be delivered, the generators can’t be fired up and the coolant can’t be circulated. When you grasp the importance of this supply line dependency, you will instantly understand why a single solar flare could unleash a nuclear holocaust across the planet.

When the generators fail and the coolant pumps stop pumping, nuclear fuel rods begin to melt through their containment rods, unleashing ungodly amounts of life-destroying radiation directly into the atmosphere. This is precisely why Japanese engineers worked so hard to reconnect the local power grid to the Fukushima facility after the tidal wave — they needed to bring power back to the generators to run the pumps that circulate the coolant. This effort failed, of course, which is why Fukushima became such a nuclear disaster and released countless becquerels of radiation into the environment (with no end in sight).

And yet, despite the destruction we’ve already seen with Fukushima, U.S. nuclear power plants are nowhere near being prepared to handle sustained power grid failures. As IBtimes reports:

“Last month, the Nuclear Regulatory Commission said U.S. plants affected by a blackout should be able to cope without electricity for at least eight hours and should have procedures to keep the reactor and spent-fuel pool cool for 72 hours. Nuclear plants depend on standby batteries and backup diesel generators. Most standby power systems would continue to function after a severe solar storm, but supplying the standby power systems with adequate fuel, when the main power grids are offline for years, could become a very critical problem. If the spent fuel rod pools at the country’s 104 nuclear power plants lose their connection to the power grid, the current regulations aren’t sufficient to guarantee those pools won’t boil over — exposing the hot, zirconium-clad rods and sparking fires that would release deadly radiation.”

Solar flare could unleash nuclear holocaust across planet Earth - Project Nsearch

No, he doesn't know it. He actually thinks he is capable of logical thought and truthful dialog. He is neither! Liberalism is a mental disorder! He fits right in there with the rest of them.:lol:
 
“Several federal government studies suggest that this extreme solar activity and emissions may result in complete blackouts for years in some areas of the nation. Moreover, there may also be disruption of power supply for years, or even decades, as geomagnetic currents attracted by the storm could debilitate the transformers.”

Why does all this matter? To understand that, you have to understand how nuclear power plants function. Or, put another way, how is nuclear material prevented from “going nuclear” every single day across our planet?

Every nuclear power plant operates in a near-meltdown state

All nuclear power plants are operated in a near-meltdown status. They operate at very high heat, relying on nuclear fission to boil water that produces steam to drive the turbines that generate electricity. Critically, the nuclear fuel is prevented from melting down through the steady circulation of coolants which are pushed through the cooling system using very high powered electric pumps.

If you stop the electric pumps, the coolant stops flowing and the fuel rods go critical (and then melt down). This is what happened in Fukushima, where the melted fuel rods dropped through the concrete floor of the containment vessels, unleashing enormous quantities of ionizing radiation into the surrounding environment. The full extent of the Fukushima contamination is not even known yet, as the facility is still emitting radiation.

It’s crucial to understand that nuclear coolant pumps are usually driven by power from the electrical grid. They are not normally driven by power generated locally from the nuclear power plant itself. Instead, they’re connected to the grid. In other words, even though nuclear power plants are generating megawatts of electricity for the grid, they are also dependant on the grid to run their own coolant pumps. If the grid goes down, the coolant pumps go down, too, which is why they are quickly switched to emergency backup power — either generators or batteries.

As we learned with Fukushima, the on-site batteries can only drive the coolant pumps for around eight hours. After that, the nuclear facility is dependent on diesel generators (or sometimes propane) to run the pumps that circulate the coolant which prevents the whole site from going Chernobyl. And yet, critically, this depends on something rather obvious: The delivery of diesel fuel to the site. If diesel cannot be delivered, the generators can’t be fired up and the coolant can’t be circulated. When you grasp the importance of this supply line dependency, you will instantly understand why a single solar flare could unleash a nuclear holocaust across the planet.

When the generators fail and the coolant pumps stop pumping, nuclear fuel rods begin to melt through their containment rods, unleashing ungodly amounts of life-destroying radiation directly into the atmosphere. This is precisely why Japanese engineers worked so hard to reconnect the local power grid to the Fukushima facility after the tidal wave — they needed to bring power back to the generators to run the pumps that circulate the coolant. This effort failed, of course, which is why Fukushima became such a nuclear disaster and released countless becquerels of radiation into the environment (with no end in sight).

And yet, despite the destruction we’ve already seen with Fukushima, U.S. nuclear power plants are nowhere near being prepared to handle sustained power grid failures. As IBtimes reports:

“Last month, the Nuclear Regulatory Commission said U.S. plants affected by a blackout should be able to cope without electricity for at least eight hours and should have procedures to keep the reactor and spent-fuel pool cool for 72 hours. Nuclear plants depend on standby batteries and backup diesel generators. Most standby power systems would continue to function after a severe solar storm, but supplying the standby power systems with adequate fuel, when the main power grids are offline for years, could become a very critical problem. If the spent fuel rod pools at the country’s 104 nuclear power plants lose their connection to the power grid, the current regulations aren’t sufficient to guarantee those pools won’t boil over — exposing the hot, zirconium-clad rods and sparking fires that would release deadly radiation.”

Solar flare could unleash nuclear holocaust across planet Earth - Project Nsearch

So a nuclear reactor that generates electricity must depend on the electric grid for power to run it's own cooling pumps?

You do realize that they can generate their own electricity right?
 
:eusa_eh:


Vogtle_3_reactor_building_(Southern)_460x123.jpg

American safety regulators gave the go-ahead today for the construction of two new nuclear power reactors.

The vote by the five-member commission brought to an end a regulatory process lasting almost four years that confirmed the safety of building two Westinghouse AP1000 reactors at the Vogtle site in Georgia. It is the first combined construction and operating licence issued by the US Nuclear Regulatory Commission (NRC).

Approval for first American nuclear new build
 
Nuke plants, in a sane world, would have only been a stop-gap measure on the way to something else and not the answer to any question. I realize the need, I really do, but we are going to be responsible for storing the waste for several thousand years, that's a pretty nasty problem to dump on the future.
 
New nuclear reactors set to be OK'd for Georgia - Feb. 8, 2012

The U.S. Nuclear Regulatory Commission is expected to approve licenses to build two new nuclear reactors Thursday, the first approvals in over 30 years. The reactors are being built in Georgia by a consortium of utilities led by Southern Co. They will be sited at the Vogtle nuclear power plant complex, about 170 miles east of Atlanta. The plant already houses two older reactors. Spokespeople for Southern Co. and the NRC were quiet on the matter Wednesday ahead of the vote set for Thursday at 12 PM ET. If approved, NRC staff would likely issue a construction and operating license...

Go for it.
 

Forum List

Back
Top