A new chapter of solar energy conversion and storage?

ScienceRocks

Democrat all the way!
Mar 16, 2010
59,455
6,793
1,900
The Good insane United states of America
A new chapter of solar energy conversion and storage?
November 13, 2012 by Kevin Hattori
A new chapter of solar energy conversion and storage?

(Phys.org)—Using the power of the sun and ultrathin films of iron oxide (commonly known as rust), Technion-Israel Institute of Technology researchers have found a novel way to split water molecules into hydrogen and oxygen. The breakthrough, published this week in Nature Materials could lead to less expensive, more efficient ways to store solar energy in the form of hydrogen-based fuels. This could be a major step forward in the development of viable replacements for fossil fuels.

"Our approach is the first of its kind," says lead researcher Associate Prof. Avner Rothschild, of the Department of Materials Science and Engineering. "We have found a way to trap light in ultrathin films of iron oxide that are 5,000 times thinner than typical office paper. This is the enabling key to achieving high efficiency and low cost. "

Iron oxide is a common semiconductor material, inexpensive to produce, stable in water, and – unlike other semiconductors such as silicon – can oxidize water without itself being oxidated, corroded, or decomposed. But it also presents challenges, the greatest of which was finding a way to overcome its poor electrical transport properties. Researchers have struggled for years with the tradeoff between light absorption and the separation and collection of photogenerated charge carriers before they die out by recombination.

"Our light-trapping scheme overcomes this tradeoff, enabling efficient absorption in ultrathin films wherein the photogenerated charge carriers are collected efficiently," says Prof. Rothschild. "The light is trapped in quarter-wave or even deeper sub-wavelength films on mirror-like back reflector substrates. Interference between forward- and backward-propagating waves enhances the light absorption close to the surface, and the photogenerated charge carriers are collected before they die off."
 

Forum List

Back
Top